Surface-based Analysis: Intersubject Registration and Smoothing

Slides prepared by: Douglas Greve

Outline

- Exploratory Spatial Analysis
- Coordinate Systems
 - 3D (Volumetric)
 - 2D (Surface-based)
- Intersubject registration
 - Volume-based
 - Surface-based
- Surface-based smoothing
- Surface-based clustering

Exploratory Spatial Analysis

- Don't know where effect is going to be
- vs ROI analysis
- Analyze each voxel separately
- Create a map
- Find clusters

3

Aging Exploratory Analysis

Cortical Thickness vs Aging Salat, et al, 2004, Cerebral Cortex

Individual Exploratory Analysis

- fMRI Words-vs-Fixation
- Single subject (eg, presurgical planning or functional ROI)
- Outlines are FreeSurfer cortical ROIs
- Yellow and blue blobs are functional activation
- Activation does not lie cleanly within a predefined ROI

Exploratory Spatial Analysis

- Generally requires spatial smoothing of data to increase SNR
- For group analysis, requires that subjects' brains be aligned to each other on a voxelwise basis.
- Neither needed for an ROI analysis
- Smoothing and intersubject registration can be performed in the volume or surface.

7

Why Is a Model of the Cortical Surface Useful?

Local functional organization of cortex is largely 2-dimensional! Eg, functional mapping of primary visual areas:

From (Sereno et al, 1995, Science).

Intersubject Registration

11

Volumetric Intersubject Registration

- Affine/Linear
 - Translate
 - Rotate
 - Stretch
 - Shear
 - (12 DOF)

- Match Intensity, Voxel-by-Voxel
- Problems
- Can use nonlinear volumetric (cf CVS)

fsaverage

- Has "subject" folder like individual FS subjects
- "Buckner 40" subjects
- Default registration space
- MNI305 coordinates

?h.average.curvature.filled.buckner40.tif

1.5

Surface-based Intersubject Registration

- Gray Matter-to-Gray Matter (it's all gray matter!)
- Gyrus-to-Gyrus and Sulcus-to-Sulcus
- Some minor folding patterns won't line up
- Fully automated, no landmarking needed
- Atlas registration is probabilistic, most variable regions get less weight.
- Done automatically in recon-all
- fsaverage

Spatial Smoothing

Why should you smooth?

- Might Improve CNR/SNR
- Improve intersubject registration

How much smoothing?

- Blob-size
- Typically 5-20 mm FWHM
- Surface smoothing more forgiving than volume-based

17

Volume-based Smoothing

• Smoothing is averaging of "nearby" voxels

Volume-based Smoothing

- 5 mm apart in 3D
- 25 mm apart on surface!
- Kernel much larger
- Averaging with other tissue types (WM, CSF)
- Averaging with other functional areas

19

Spatial Smoothing

- Spatially convolve image with Gaussian kernel.
- Kernel sums to 1
- Full-Width/Half-max: FWHM = σ /sqrt(log(256))
- σ = standard deviation of the Gaussian

Effect of Smoothing on Activation

- Working memory paradigm
- FWHM: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Surface-based Smoothing

• Smoothing is averaging of nearby <u>vertices</u>

Sheet: 2D Coordinate System (X,Y)

Sphere: 2D Coordinate System (θ , ϕ)

Group fMRI Analysis: Volume vs Surface

Affine registration to MNI305 with volume smoothing

Probe-vs-Fixation. Data from Functional Biomedical Informatics Research Network (fBIRN)

Surface-based Clustering

- A cluster is a group of connected (neighboring) vertices above threshold
- Neighborhood is 2D, not 3D
- Cluster has a size (area in mm²)
- Reduced search space (corrections for multiple comparisons)

25

Summary

- Why Surface-based Analysis?
 - Function has surface-based organization
 - Inter-subject registration: anatomy, not intensity
 - Smoothing
 - Clustering
 - Like 3D, but 2D

