HOWTO: vox2ras calculation from meas.asc

Rudolph Pienaar
9th June 2004

Abstract

The vox2ras matrix defines the rotational and translational mapping between logical and real-world
volume image coordinates. It is an important parameter in the visualization of reconstructed scanner
data. In the case of on-line image reconstruction, it is usually determined from DICOM headers. For off-
line image reconstruction, however, only the raw k-space scanner data and a brief header file are available.
The header file, meas.asc, does not by default contain enough information to uniquely determine the
vox2ras matrix.

This technical report presents two methods by which to retrieve the vox2ras data using the meas.asc
file. The first method relies on embedding the rotational component directly in the meas.asc file during
a scan. The second method attempts to solve for the vox2ras rotational component using only a single
direction cosine vector and some experimental data. The translational component of the vox2ras matrix
is calculated in both cases once the rotational data has been determined. The overall accuracy of the
rotational and translational calculations are discussed in the results section, which shows that an accuracy
to about four decimal places can be achieved with these methods.

1 Introduction

In-house visualization of reconstructed scanner volumes using tools like tkmedit [2] rely on a vox2ras
matrix that specifies the rotational and translational mapping between logical scanner and real-world volume
coordinates. Typically, k-space scanner data is reconstructed on-line, i.e. during the scanning session, and
resultant image volumes are saved in the scanner database in DICOM [1] format. Various tools have been
developed that analyze these DICOM reconstructed volumes and determine an appropriate vox2ras matrix.

Sometimes it is more advantageous to defer image volume reconstruction off-line, in which case only
scanner raw k-space data is collected and no visualization is performed at the scanner console. Such a
scenario often arises when on-line reconstruction of an image volume at the scanner console might take a
prohibitively long time, particularly in multi-echo, multi-channel, and/or high resolution scans. For such
off-line collected data, corresponding DICOMs (and hence vox2ras data) might not exist, and the only data
present might be the actual raw k-space data itself (saved in Siemens scanners in a file called meas.out) and
a small descriptive header file (in the Siemens case saved in a file called meas.asc).

This technical report describes some techniques for calculating a vox2ras matrix for these off-line data
volumes using only meas.asc. By implicit assumption, the scope of this report is limited to Siemens scanners
and their associated raw data files. Two methods of determining the rotational components of the vox2ras
matrix will be discussed: (1) a direct parsing of the meas.asc file for sequences that have been appended
to embed a scanner-internal rotation matrix directly in meas.asc; and (2) a method to calculate the rota-
tional components for cases that do not have this embedded scanner-internal rotational matrix appended to
meas.asc. The first method depends on non-standard changes to the Siemens scan techniques, and is only
available to sites that have an IDEA development site license. Although more accurate, as a technique it
suffers from being non-portable. The second method uses only the standard Siemens meas.asc header file,
and while slightly less accurate, is portable across any Siemens scanner. Once the rotational components of
the vox2ras matrix have been determined, we can calculate the translational component that defines the
center of k-space in the reconstructed image volume.

After discussing the methods, some brief results will be presented that compare the accuracy of each
technique against some reference data. This reference data is collected from an analysis of ten separate

scan sessions for which embedded scanner-rotation matrix data and DICOM derived vox2ras information
is available.

2 Methods

2.1 The vox2ras matrix

A vox2ras matrix has the following structure:

Ly Yr Zr Cp

V — xll ya le Ca (1)
xS yS ZS CS
0O 0 0 1
or, alternatively
_ | K] [[d
V=10 0o o 1 @)

where x, y, z, and c are the constituent 3x1 vectors. Direction cosines defining the orientation of the
image volume in real space are encoded in the x, y, and z vectors. These vectors describe the mapping
from a logical coordinate system to a physical RAS (Right-Anterior-Superior) sense. The x vector describes
how the “PhaseEncode” logical dimension is mapped to RAS coordinates; the y vector describes how the
“Read0ut” logical dimension is mapped; and the z vector describes how the “S1iceSelect” logical dimension
is mapped.

The RAS (Right-Anterior-Superior) sense is patient-relative, and specifies the following orthogonal base
axes originating in the center of k-space, i.e. the center of the scanned volume: (1) from the origin to the
patient’s right; (2) from the origin to the patient’s front; and (3) from the origin towards the top of the
patient’s head. These directions are normal to the following planes respectively: (1) sagittal; (2) coronal;
(3) transverse.

Additionally, the x, y, and z vectors are orthogonal (but not orthonormal) and are scaled by the real-space
voxel dimension size d = [d, d, d. | such that

‘T"‘ yT ZT ‘/i.r ZQ’I‘ 27‘ d(l) O O
To Ya 24 | = | Ta Ya Za 0 d, O (3)
Ts Ys Zs Ts Us Zs 0 0 d.

where the X, ¥, and Z vectors on the right hand side are normalized.

2.2 Scanner coordinates senses and internal rotation matrix

Siemens scanners operate in a right-handed orthogonal LPS (Left-Posterior-Superior) sense [7]. An LPS
sense relates to an RAS sense by inverting the directions of the first two dimensions

LPS=(-R)(-A)S (4)

This inverted direction of the sagittal and coronal planes implies that volumes reconstructed in an LPS
sense need to invert the save directions of their sagittal and coronal dimensions to be correctly viewed in RAS
sense tools. Although beyond the scope of this report, this LPS to RAS relation has direct implications for
any off-line image reconstruction software that wishes to save image volumes in an RAS sense (the in-house
developed MGH format assumes that images are encoded in an RAS sense).

The logical scanner coordinate system is fixed by the magnetic gradient directions G that define the
“PhaseEncode”, “ReadOut”, and “SliceSelect” directions. These are related according to [7]

GPhascEncodc X GRcadOut = GSliccSclcct (5)

The fixed zyz-coordinate system of the scanner hardware is defined by standing in front on the scanner
and peering straight ahead into the scanner bore. The z-axis points from left to right, the y-axis points down

Algorithm 1 ICE programming snippets to capture the Siemens internal R rotation matrix.
bool IceProgramADCRotSave::prepare () {
// Open meas.asc and meas.out for access

}
bool IceProgramADCRotSave::online (MdhProxy &aMdh, IceAsFifo &fifoAs) {
// Rotation matrix data
sSliceData s_SD; double adRM[3][3];
s_SD = aMdhCopy.getSliceData(); aMdhCopy.getRotMatrix(adRotMatrix, s_SD);
for(int i=0; i<3; i++)
fprintf (meas.asc,
"### adRM[i] [0] = %f adRM[i][1] = %f adRM[i][2] = %f\n",
adRM[i][0], adRM[i][1], adRM[i][2]);

Algorithm 2 Siemens rotation matrix written to a non-standard meas.asc.

Additional derived data

#i##

Bandwidth_per_pixel_for_ADC[0] = 651.042

adRM[0] [0] = 0.0367939 adRM[0][1] = 0.9924 adRM[0][2] = 0.117422
adRM[1]1[0] = -0.0270481 adRM[1][1] = -0.11647 adRM[1]1[2] = 0.992826
adRM[2] [0] = 0.998957 adRM[2][1] = -0.039706 adRM[2][2] = 0.0225572

to up, and the z-axis points from the back of the bore straight over the patient table towards your viewpoint.
If one visualizes a patient lying head first, and on their back on the table, we can see that the from the
patient’s perspective a point in the scanner xyz space relates in the following manner to the patient’s RAS
sense

x 10 0 R
yl=]0 1 0 A (6)
z 0 0 -1 S

and this xyz coordinate system is thus orientated normal to the patient’s sagittal, coronal, and and
transverse planes respectively.

2.3 Direct parsing of rotational component

The scanner keeps track of a mapping between its logical coordinate system and its fixed physical system in
an interal rotation matrix structure, R such that

Gw GPhaseEncode
Gy =R GRcadOut (7)
Gz GSliccSclcct

where R is defined in an LPS sense. This R matrix can quite easily be manipulated into a vox2ras
matrix; indeed the challenge as such becomes a case of capturing the R matrix during a scan and recording
it in a manner that is accessible to an off-line reconstruction program.

A workable solution is to adapt the sequence C++ generating code. Within the Siemens ICE [9] develop-
ment environment a candidate ICE program associated with a given sequence can have its ::online(...)
method adapted so as to record the R matrix'. This matrix is recorded at the end of a meas.asc file and
marked with comment characters to protect it from hidden side effects that might arise. The core concepts
of capturing the R matrix are presented in Algorithm 1, and an example of an R matrix appended to a
meas.asc file is given in Algorithm 2. This matrix can then be parsed from the meas.asc in a straightforward
manner by reconstruction software.

LICE programming concepts are beyond the scope of this report.

Algorithm 3 An example of standard sagittal direction cosine fields in meas.asc.

sSliceArray.asSlice[0].sNormal.dSag

= 0.998068
sSliceArray.asSlice[0].sNormal.dCor = -0.023969
sSliceArray.asSlice[0].sNormal.dTra = 0.057326

An additional comment needs to be made. Once the code was developed and deployed it was noticed
that the Siemens matrix is row dominant (evident in Equation 7), while the vox2ras matrix is column
dominant (Equation 1). This slight oversight is easily corrected by simply transposing the R matrix. Given
this information, we can specify the 3x3 rotational component of the vox2ras matrix in terms of R as

Vi = X;RTX,D
(1 0 0
X, = 01 0
[0 0 -1
[—1 0 0]
X, = 0 1 0
| 0 0 -1 |
[dy 0 0]
D = 0 d, 0 (8)
| 0 0 d. |

where X; and X, implement an LPS to RAS conversion (with the added stipulation that the sagittal
plane is orientated such that the “nose” points to the “right” of the view window). The voxel dimension
matrix, D, contains the size of each voxel as described in Section 2.1.

2.4 Indirect calculation of rotational component

The direct parsing of the scanner-based rotation matrix is the most efficient mechanism by which to determine
the rotational component of the vox2ras matrix. This scanner matrix, however, is a non-standard addition
to the meas.asc file and thus may not be available for all scans or under all situations. In order to address
this shortcoming, we will now discuss a mechanism for calculating the rotational component of the vox2ras
matrix using only the standard meas.asc file.

By default, the meas.asc captures a vector orthonormal to the main slab orientation, i.e the direction
cosine for the SliceSelect plane. This vector is defined in a (sagittal, coronal, transverse) coordinate system
— see Algorithm 3 for an example. Referring to Equation 2, this vector is simply the normalized z vector
of the vox2ras matrix. Siemens defines the two additional orthogonal vectors (the two remaining direction
cosines, i.e. the PhaseEncode direction and the ReadOut direction) by rotating the SliceSelect vector by 90
degrees and then calculating the PhaseEncode reference vector as shown in Algorithm 4.

From Algorithm 4, we see that the PhaseEncode vector is defined for each main orientation of the
SliceSelect. In the case when the SliceSelect is primarily transverse, the reference PhaseEncode vector
is
I 0

1
25\ /22 +22 7 9)

while if the SliceSelect is primarily coronal, the reference PhaseEncode vector is

- 1
2
Zar/ 72 + 22
—zpr/ 22 + 22
0

Xreference —

=

o=
—~

—

(=}
~

Xreference =

Algorithm 4 Defining the PhaseEncode reference vector from the SliceSelect vector. Vc_P denotes the
PhaseEncode reference; Vc_Cn denotes the SliceSelect (in [5] derived from [8]).

%% phase reference vector
Vc_P = zeros(3, 1);
switch ch_orientation

case ’t’
Vec_P(1) = 0;
Ve _P(2) = Vc_Cn(3)*sqrt(1/(Ve_Cn(2)*Vc_Cn(2)+Vc_Cn(3)*Vc_Cn(3)));
Vc_P(3) = -Vc_Cn(2)*sqrt(1/(Vc_Cn(2)*Vc_Cn(2)+Vc_Cn(3)*Vc_Cn(3)));

case ’c’
Ve _P(1) = Vec_Cn(2)*sqrt(1/(Ve_Cn(1)*Vc_Cn(1)+Vc_Cn(2)*Vc_Cn(2)));
Vc_P(2) = -Ve_Cn(D)*sqrt(1/(Ve_Cn(1)*Vc_Cn(1)+Vc_Cn(2)*Vc_Cn(2)));
Vc_P(3) = 0;

case ’s’
Vec_P(1) = -Ve_Cn(2)*sqrt(1/(Vc_Cn(1)*Vc_Cn(1)+Vc_Cn(2)*Vc_Cn(2)));
Vc_P(2) = Vc_Cn(D)*sqrt(1/(Ve_Cn(1)*Vc_Cn(1)+Vc_Cn(2)*Vc_Cn(2)));
Vc_P(3) = 0;

otherwise

fprintf(1, ’Unknown orientation parameter passed.’);
return;
end

and for the case when the SliceSelect is primarily sagittal, the reference PhaseEncode vector is

1
-2
—Za\/ 22 + 22
_ 1
Xreference — Zr /22 + 22 2 (11)
T a

0

Having thus defined the PhaseEncode reference X;eference vector, we calculate the ReadOut reference vector
Yreference a8 the cross product between the SliceSelect and the PhaseEncode,

Yreference = Zmeas.asc X Xreference (12)

We have now defined the direction cosines in a reference frame. To arrive at the rotational vox2ras
matrix, we simply rotate the XyefereceYreference Plane about Zpcas.ase by the radian amount defined in the
sSliceArray.asSlice[0].dInPlaneRot (or O,o) field of meas.asc. Combining all of this together, we
have

cosbot sinf.,; 0O

Vrot - [[xreference] [yreference] [Zmeas.asc] } _Sinerot COS erot 0 XD
0 0 1

[1 0 0

X = 0 -1 0
0 0 1
[d, 0 O

D = |0 4 0 (13)
L0 0 d.

with X and D as described in Section 2.3. Note that an implementation of calculating the rotational
component of the vox2ras matrix is prototyped in [5].

Algorithm 5 An example of slice position ¢, = [¢sp Csa Css }T in real zyz space, defined in meas.asc.

sSliceArray.asSlice[0].sPosition.dSag = 2.419566
sSliceArray.asSlice[0].sPosition.dCor = -22.07259
sSliceArray.asSlice[0].sPosition.dTra = 4.0306

2.5 Center of k-space calculation

The previous two Sections concerned themselves with determining the rotational component of the vox2ras
matrix, i.e. the constituent x, y, and z vectors. The remaining c vector, i.e. the offset to the center of k-space
still remains. As with the indirect calculation of the rotation matrix, we start by parsing the meas.asc file
— this time for the values that specify the position of the first slice in real scanner xyz space (see Algorithm
5).

Our intuition would suggest that given the slice position c,, we can find the center of k-space by traveling
along the negative SliceSelect vector for a distance equal to one-half of the image volume. However, after
studying several sequences for which raw data had been acquired, and for which vox2ras matrices were
available, the following method of finding the k-space center was found:

First, calculate two end point vectors, n = (n, na ns)andp=(pr pa ps) such that

1 1 1
= —c,— =-A - =A - =A
n C B PEX B ROY 5 SSZ
1 1 1
p = +cs— §APEX - §AROy - §ASSZ (14)

where A = [Aprg Agro Ass } are the logical lengths of the PhaseEncode, ReadOut, and SliceSelect
dimensions. Note the inverted signs of the first two positional components. Given these two vectors, the
final k-space center is

n,+d
c = Ng (15)
Ps

Note the value d that is added to the ¢, component. It would appear that there is a consistent error of
about one half pixel in the PhaseEncode k-space center in all the scans that were analyzed. For the standard
GLEEK sequences at the NMR center of A = [256 256 128 |and voxel dimensionsof [1 1 1.33 |mm,
d = —0.67.

Note that an implementation of this method is prototyped in [4].

3 Results

The results section is concerned mainly with the accuracy of the methods described in this paper. To this
end, we will compare the vox2ras matrices derived from the methods of Sections 2.3, 2.4, and 2.5. We
will assume that we can compare our results against a corresponding vox2ras matrix derived from DICOM
headers. We will also assume that this DICOM-derived vox2ras is the “correct” matrix.

To this end, we will examine the rotational submatrix and center of k-space vector separately for both
the direct parsing and the indirect calculation approaches. In the case of the rotational component, we will
define a comparison matrix as

—1
VrotComparison = VrotDICOMVrot (16)

where V. is determined first by direct parsing, and then by indirect calculation. A root-mean-square
of the comparison matrix is then evaluated

Table 1: rms values for each of the methods used in this paper. The first column denotes the inPlaneRot for
a given sample case. For columns two through five, an exact value of 1 would indicate complete correlation
between the DICOM reference vox2ras and the method used for that column. The last row in italic face
denotes the mean value of each column. DP = Direct Parsing; IC = Indirect Calculation

| inPlaneRot (rad) | rms;,x DICOM/DP | rms. DICOM/IC | rms ¢ DICOM/DP | rms c¢ DICOM/IC |

3.4560473e-03 | 1.0000443e+00 1.0000443e+00 1.0000896e+00 1.0000894e+00
-2.1622696e-01 | 1.0000434e+00 1.0000434e+00 1.0003922e+00 1.0003921e+00
-4.8874619e-02 | 1.0000302e+00 1.0000302e+00 1.0000161e+00 1.0000160e+00
-2.3524211e-02 | 1.0000404e+00 1.0000404e+00 1.0001015e+00 1.0001014e+00
1.2565314e-01 | 1.0000215e+00 1.0000215e+00 1.0000214e+00 1.0000216e+00
6.9769392e-02 | 1.0000491e+00 1.0000491e+00 1.0001563e+00 1.0001559e+00
-1.1772370e-01 | 1.0000190e+00 1.0000190e+00 1.0001191e+00 1.0001191e+00
-1.2566354e-01 | 1.0000397e+00 1.0000397e+00 1.0000038e+00 1.0000042e+00
-1.0086616e-01 | 1.0000071e+00 1.0000071e+00 1.0003370e+00 1.0003370e+00
-2.6881501e-01 | 1.0000454e+00 1.0000454e+00 1.0000034e+00 1.0000033e+00
-7.0281562e-02 | 1.0000340e+00 1.0000340e+00 1.0001240e+00 1.0001240e+00
HVVUtComparison H
e (VrotCOmparlson) B \/I‘OWS (VrotComparison)COls (VrotComparison) (17)

In the case when V,.tprcom is exactly equal to Vo this rms value will be % Similarly, for the center
of k-space vector, we can define an analogous set of operations. Since the comparison vector in the k-space
case would in the ideal case be [1 1 1 }T, the rms value would in this case be exactly 1.

Table 1 shows the results of the above comparisons, taken across 10 sample cases. The first column
contains the particular in plane rotation radian. The second and third columns are rms (VyotComparison)
for the direct parsing and indirect calculation cases respectively. For ease of reading, these columns are
multiplied by 3 so as to “normalise” the rms. A value of 1, therefore, indicates an exact match between the
DICOM rotational vox2ras and the methods of this paper. The final two columns are the rms values for
the center-of-k-space, with column four corresponding to the direct parsing approach, and column five the
indirect calculation method (note that these methods only refer to determining the direction cosines — the
k-space center is a linear function of these direction cosines as per Equation 14).

4 Conclusion

This technical report documents several techiques for determining the vox2ras matrix for an off-line scan
given only scanner raw data. The first, most accurate, method relied on embedding a Siemens-specific
rotation matrix at the end of a sequence’s meas.asc header file. This matrix is manipulated into the rota-
tional components of a vox2ras matrix with vector transpose, scaling, and sign operators. While appealing,
this method relies on non-standard enhancements to specific scan sequences and is therefore not generally
available.

A second method uses the standard meas . asc file and applies some knowledge of how Siemens constructs
reference vectors to determine the rotational components of a vox2ras matrix. This method is portable
(i-e. does not rely on non-standard enhancements) and results in rotational components that compare very
favourably (if not exactly) with those of direct parsing.

Once the rotational components have been found by either method, determining the center of k-space
follows in a straightforward manner.

The accuracy of these methods, as compared to a canonical reference, is very high. In the case of the
rotational components, accuracy to at least four decimal places is measured (and this is probably due the
fact that the canonical DICOM reference only supplied accuracy to four decimal places). The center of

k-space component of the vox2ras matrix also compares favorably to the DICOM reference — accurate to
about three decimal places.
A working prototype in Matlab of these methods is available in [3].

References

[1] HEMA. Digital Imaging and Communications in Medicine. http://medical.nema.org/, 2004.

[2] NMR Center developed software. tkmedit. NMR Center developed software, 2004.

[3] Rudolph Pienaar. vox2ras_dfmeas.m. NMR, Center developed software, 2004.

[4] Rudolph Pienaar. vox2ras_ksolve.m. NMR, Center developed software, 2004.

[5] Rudolph Pienaar. vox2ras_rsolveaa.m. NMR Center developed software, 2004.

[6] Rudolph Pienaar. vox2ras_rsolve.m. NMR Center developed software, 2004.

[7] Siemens AG. IDEA Manual. Siemens AG, Medical Solutions, Magnetic Resonance, 2003.

[8] Andre van der Kouwe. autoaligncorrect.cpp. NMR Center developed software, 2002.

[9] Harald Werthner. ICE User’s Guide. Siemens AG, Medical Solutions, Magnetic Resonance, 2002.

A Appendix: second method of indirect rotational vox2ras calcu-
lation

The primary indirect method of calculating the rotational vox2ras component is described in Section 2.4.
This relies on a knowledge of the Siemens mechanism of calculating the reference positions for the PhaseEn-
code and ReadOut vectors. In the absence of this reference knowledge, the method described in this appendix
can also be used.

Before we begin, we should note that in the case when there is no relative orientation of the scanned
object,

00 1
RT=|1 0 0 (18)
010

the vox2ras rotational component V. is found to be (from Equations 3 and 8)

0 0 —1.33
Vie=|—1 0 0 (19)
0 -1 0

Referring to Equation 2, we note that the meas. asc file contains the normalized sagittal direction cosine,
z in the fields described in Algorithm 3. We can scale this direction vector by the voxel size value d, and
propose a candidate vox2ras rotational component matrix of the following structure

Ty Yr Zr
VrotCandidatc = -1 Ya Za (20)
rs —1 2z

Since we know that all three column vectors are orthogonal, their dot products are zero. Furthermore, we
also know that z = —x x y (the negation is required to orientate the sagittal direction with the “nose” to the
“right” when viewed in tkmedit). Given this information, we can construct the following sets of Equations.
First, the dot product of x and y gives:

TrlYr — Ya — Ts = 0 (21)

and the dot product of x and z becomes

Tplp — 2+ Ts2s = 0
1
Ty = —(2q — Ts2s) (22)
Zy

while the dot product of y and z is

Yrzr + YaRa — Rs = 0
1
Yr = Z_ (Zs - yaza) (23)

and finally, using the cross product relation, we can state that

Zr = YaTs—1
1
Vo = =Gt) (24

Using these four equations we can solve for the unknown components x,., x5, ¥, and y,, eventually deriving
the following quadratic equation in x4

(224 22) 22 — (2za2s + 2r2a2s) Ts + (220 + 22+ 22 +22) =0
Ax? + B, +C'=0 (25)

which can be solved in a straightforward manner using the well known quadratic relation

—B++vB? - 4AC

Due to the quadratic nature of the solution, we can have two candidate vox2ras rotational matrices.
Moreover, the meas . asc file defines an in-plane rotational parameter, sSliceArray.asSlice[0] .dInPlaneRot
that is relative to a base reference direction (see Section 2.4).

In the absence of knowing how Siemens defines this reference orientation, we can reason as follows: by
fixing the two components of the x and y matrix as in Equation 20, our solution candidates define an x and
y vector whose resultant is orientated along a default fixed direction. We still need to determine the relation
between this fixed direction and the dInPlaneRot parameter of meas.asc, fyeas Such that 67 = F(Omeas)-
Once we know 07 we can rotate x and y about z by 6 to determine the rotational vox2ras using

cosfy sinfy O
Viot = ViotCandidate —sin 9]" COS 0]" 0 (27)
0 0 1

By always using the positive square root in Equation 26, we can empirically study existing dInPlaneRot
values Op,cas as they correspond to vox2ras matrices by iteratively solving for ¢ until V. for a given study
corresponds to a DICOM-derived rotational vox2ras. After analyzing ten different studies, the following
linear relationship between fmcas and 65 was found

9f = MBOmeas + b (28)

where m = —1.0025, b = —0.5188.

Due to the empirical nature of this analysis, the resultant V. is not as accurate as that found by using
the methods of Section 2.4. We can achieve a good correlation between these two methods a posteriori by
asking ourselves which rotation angle 6. in Equation 27 would rotate Viotcandidate SO that it is coincident

with the Siemens reference. If we replace ViotCandidate With the rotational component of Equation 1, and

implement a 6. rotation, we find a reference matrix

Ty Yr Zr
Vrcf = -1 Ya Za
rs —1 2z

Tgcos b, + sinf,

cosfl, sinf, O
—sinf,. cosf, O

T, cos . — y,sinf,
= —cosf. — Yy, sin b,

0 1

T, sinf. + y,.cosb. 2z
—sinf, + y,cosb. 2z,
rgsinf, —cosb. z

(29)

Since from Section 2.4 we know that the last element of the PhaseEncode vector (i.e. the last element of the

first column) is zero, we can solve for 6,

Tscosf. + sinf,
sin 0.
O

0
—xgcos6,

arctan —xg

Therefore, in Equation 27, instead of using Equation 28 for 6, we can propose

9f - 90 - emeas

(30)

(31)

and arrive at a Vo that is identical to that found by the methods of Section 2.4. The method described

in this appendix is prototyped in [6].

10

