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Abstract - We present a set of techniques for embedding the physics of the imaging process that 

generates a class of Magnetic Resonance Images (MRI) into a segmentation/registration algorithm. This 

results in substantial invariance to acquisition parameters, as the effect of these parameters on the 

contrast properties of various brain structures is explicitly modeled in the segmentation. In addition, the 

integration of image acquisition with tissue classification allows the derivation of sequences that are 

optimal for segmentation purposes. Another benefit of these procedures is the generation of 

probabilistic models of the intrinsic tissue parameters that give rise to MR contrast (e.g. T1, proton 

density, T2*), allowing access to these physiologically relevant parameters that may change with 

disease or demographic, resulting in non-morphometric alterations in MR images that are otherwise 

difficult to detect. Finally, we also present a high-bandwidth multi-echo FLASH pulse sequence that 

results in high signal-to-noise ratio with minimal image distortion due to B0 effects. This sequence has 

the added benefit of allowing the explicit estimation of T2*, and of reducing test-retest intensity 

variability. 

1. Introduction. 

Neurodegenerative disorders, psychiatric disorders, and healthy aging are all frequently associated with structural 
changes in the brain. These changes can cause alterations in the imaging properties of brain tissue, as well as changes in 
morphometric properties of brain structures. Morphometric changes may include variations in the volume or shape of 
subcortical regions, as well as alterations in the thickness, area and folding pattern of the cortex.  Surface-based analyses 
can provide an accurate assessment of cortical variability, while volumetric techniques can detect changes in noncortical 
structures. For example, changes in ventricular or hippocampal volume are frequently associated with a variety of diseases 
(e.g. [1-3]).  

Unfortunately, these changes are frequently difficult to detect due to technical reasons. For example, combining scans 
from different manufacturers would be an attractive option, as it would allow large-scale studies to be carried out across 
different scan sites, potentially resulting in significantly increased statistical power to detect small changes.  However, 
merging data across scanners is problematic, as the contrast properties of the scans may vary due to subtle differences in 
the way the images are acquired (e.g. fat suppression, gradient and RF spoiling schemes, slab selectivity, etc…). An 
additional problem is that distortions in the imaging process can be scanner specific [4]. Probably the largest factor in 
preventing the combination of scans across studies and/or sites is that no set of standard pulse parameters exists for 
acquiring structural data. The variation in the imaging parameters results in changes in the contrast properties of the 
resulting images that are independent of the underlying tissue, but rather reflect the physics of the imaging process. These 
changes in contrast properties can introduce variability in morphometric measures that do not reflect biological effects but 
rather technological ones, and thus should be minimized. 

Here we present a set of techniques for embedding forward models of the imaging process into a segmentation 
algorithm. This has a number of substantial benefits. First, it allows the explicit estimation of the intrinsic tissue properties 
that are the main source of contrast in MRI images, including T1, T2*, and proton density (P).  The segmentation is then 
phrased in terms of these parameters, which are properties of the brain and independent of scanner and pulse sequence, 
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rendering it insensitive to variation in the pulse parameters1. This invariance is accomplished by including the parameters 
and their effect on image contrast into the segmentation, effectively predicting the intensity distribution of each brain 
structure under the set of parameters used in the acquisition. 

A further advantage of the integration of the imaging physics into the segmentation process is that it allows the 
optimization of the MR pulse parameters to be phrased directly in terms of reducing the probability of misclassification. 
This allows one to specify the imaging time available for a study, then to compute the MR acquisition parameters that are 
optimal for the segmentation. Further, if a subset of structures are of interest, the optimization can be naturally constrained 
to those structures, yielding sequences that are, for example, optimal for segmenting the hippocampus. It is important to 
note in this context, that this is not equivalent to maximizing the SNR of a structure, but rather to maximizing the 
Mahalanobis distance between each pair of tissue classes that occurs in proximity to one another.  This is in contrast to the 
more standard technique of maximizing overall gray/white contrast, which doesn’t account for the spatial distribution of 
heterogeneous tissue such as cortical gray matter, nor the fact that the accuracy of the segmentation of the gray matter is 
dependent on how much the intensity distribution of the gray matter overlaps with other structures in the skull that can be 
adjacent to gray matter, such as cerebrospinal fluid (CSF) and dura. 

The explicit estimation of the underlying tissue parameters has other potential benefits as well. For example, changes 
in T1 and proton density separately may not be reflected in the corresponding T1-weighted images, as they may offset each 
other. In addition, cell death or gliosis may entail changes in the parameters, but not in morphometric properties such as 
volume. Variations of this nature would thus be undetectable to a standard morphometric analysis procedure, but would be 
clearly revealed by cross-group comparison of the tissue parameters. 

Finally, it is clear that multi-spectral information (e.g. different flip angles or different TRs) provides additional 
information that is not present in a single T1-weighted image. This is due to the highly correlated nature of T1 and proton 
density (their correlation coefficient in brain is greater than 0.5), and the fact that they influence contrast in opposite 
directions. For example, cortical gray matter has a longer T1 and a higher proton density than the underlying white matter. 
The longer T1 tends to darken the gray matter, while the higher PD brightens it, resulting of course in the reversal of 
contrast seen in T1-weighted versus PD-weighted images. Thus, it is clear separating the effects of different tissue 
properties can significantly enhance class separation. 

2. Methods. 

In previous work [5] we developed a procedure for automatically and accurately labeling each voxel in the brain as one 
of 40 structures (e.g. thalamus, hippocampus, amygdala, etc…), building on the work of many researchers [6-10]. Briefly, 
this procedure is based on modeling the segmentation as a nonstationary anisotropic Markov Random Field (MRF), in 
which the probability of a label is modulated by the probability of its neighbors, with the probabilities computed 
separately at each position in an atlas, for each pair of tissue classes and for each of the six cardinal directions. This results 
in a maximum a posteriori (MAP) estimation problem, in which the segmentation W is given by: 
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where r’=f(r) is the image coordinate corresponding to the atlas coordinate r, as given by the atlas function f.  
In this paper, we present a number of enhancements to this procedure. First, the likelihood term p(I|W) is modified to 

include a forward model of image formation, yielding a segmentation procedure that can model changes in acquisition 
parameters, and hence be insensitive to them. Second, the explicit modeling of the image formation process into the 
segmentation allows the derivation of MR acquisition parameters that are optimal for the purposes of segmentation. Third, 
we derive a nonlinear atlas function f that increases the anatomical accuracy of the atlas coordinate system. Finally, the 
intrinsic tissue parameters that are the source of contrast in MR imaging are themselves estimated as part of the procedure, 
giving access to biologically relevant parameters that are independent of the acquisition details and may vary with a 
variety of conditions and disorders.   

2.1. Intrinsic tissue parameter estimation 
MRI is an amazingly versatile technology that allows one to probe various properties of the brain through the 

manipulation of magnetic and radio frequency (RF) fields. Standard structural imaging is typically based on some 
                                                      
1 Note that there is a field-strength dependence for some of the parameters such as T2* and T1, but they are not dependent on the 

acquisition parameters. 
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combination of three time constants that vary by tissue type (T1, T2 and T2*) as well as the density of protons (P) that are 
being imaged. Here, we focus on a class of acquisition protocols known as either fast low-angle shot (FLASH) or spoiled 
gradient recalled echo (SPGR). These steady-state saturation recovery gradient echo sequences have a number of 
advantages: 

1. They are easily modeled with a well-known equation for image formation. 
2. They can be manipulated to generate contrast differences arising from different intrinsic tissue parameters. 
3. They are commonly available on the vast majority of MR scanners. 

Specifically, for these sequences, the measured signal S can be modeled as a function of the intrinsic tissue parameters 
β=[T1, P, T2*]T by solving the steady state Bloch equation via:  
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where m=[TR,TE,α]T are the acquisition parameters that the user is free to modify. Estimation of the tissue parameters β 
is a well-posed problem assuming at least as many FLASH images have been collected as there are parameters to be 
solved for. In general, though, making the problem overdetermined by collecting additional measurements will result in 
less noise in the parameter estimates. Specifically, we estimate the parameters by maximizing the likelihood of the 
observed signals I given our estimated parameters β: 

(3) ))(|)((maxarg)( rβrIrβ p=  
Assuming Gaussian noise in the image intensities, we have: 
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Further assuming independent identically distributed unit-variance noise and taking the log of equation (4), results in a 

standard least-mean-squared (LMS) estimate of β: 
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Subject motion between FLASH scans acquired with different pulse parameters is a potential source of error in the 
parameter estimation procedure. Standard motion-correction algorithms [11] have difficulty accurately coregistering the 
images in this domain as the images have variable contrast properties. While other techniques can be employed that are 
less sensitive to direction of contrast [12, 13], some accuracy may be sacrificed. Here, we directly solve for the rigid 
alignment parameters that minimize the parameter estimation error. The parameters are then re-estimated using the new 
alignment, and this procedure is iterated until it converges. Again, denoting the observed images by Ii and the forward 
model given by equation (2) relating the tissue parameters β and the pulse parameters mi to a predicted image by S(mi,β), 
we minimize the following energy functional to solve for the rigid alignment parameters Ri: 
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We minimize equations (5) and (6) using a multi-scale global search of the six dimensional rigid alignment parameter 
space, starting with angles in the interval [-13o,13o], and translations in [-10 mm,10 mm] after aligning centroids. The 
estimation of the intrinsic tissue parameters in equation (5) is simplified by noting that the proton density is a scale factor 
that can be removed by normalizing the length of β. The T1 can then be estimated using a precomputed table that maps T1 
values discretized in 1ms intervals from 10ms to 10sec into normalized signal intensities in O(log(n)) time with a binary 
search. The proton density can then be computed as the ratio of the norm of the image intensities at the voxel to the norm 
of the signal table at the appropriate T1 for unit proton density. 

2.2. Cross-sequence Prediction of Means and Covariance Matrices. 
The estimation of the intrinsic tissue parameters β solves part of the problem of attaining the desired invariance to 

modifications in pulse parameters.  However, in order to segment a novel image with an arbitrary set of acquisition 
parameters, we must be able to predict the intensity distribution of each tissue class c under the new set of MR parameters 
m (that is, p(I|m,c)). With the assumption that the noise is Gaussian distributed, this amounts to being able to predict the 
mean vector and covariance matrix of each class at each atlas location in the new signal space. Given the tissue parameters 
β, the means are easily predicted by using them as input to the forward model of equation (2), where the MR parameters 
m are typically contained in most current image headers: 

(7) ))(,(,(),(ˆ trainingpredicted rmmrm cc S µβµ =  
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where mtraining are the MR parameters used in the construction  of the atlas, and mpredicted are the MR parameters of the 
image to be segmented. Global gain factors are accounted for by normalizing the mean overall proton density to a 
predefined constant. Bias fields caused by the sensitivity profile of the receive coil2 also corrupt the estimates of the 
proton density P. These are accounted for by automatically selecting a set of points whose posterior probability of being 
white matter is high, then using these as fixed points in a soap bubble interpolation algorithm to fix the white matter 
intensity to a desired value [14].  

For predicting the covariance structure, we decompose the noise into two parts. The first is anatomical variability in 
the intrinsic tissue properties of the various brain structures. The second is white noise inherent in the imaging process. 
This results in the predicted covariance structure given by: 

(8) IdJJJJ T
cc λ+Σ=Σ ++ T

predictedtrainingtrainingpredicted )()(ˆ m  

where J is the jacobian matrix of S, J+ denotes the pseudo-inverse of matrix J, Id is the identity matrix of the same 
dimensionality as predicted covariance matrix, and λ is a constant that reflects the component of the noise that is scan-
dependent. The scan dependent part of the noise encapsulated in λ reflects factors such as averaging multiple acquisitions 
and the bandwidth of the scan. 

2.3. Sequence Optimization. 
Much effort has been devoted in the MRI community towards finding pulse parameters that are optimal for various 

tasks [15-21], including optimization for segmentation [22]. An advantage of phrasing the segmentation procedure in 
terms of models of image acquisition is that it provides a natural framework for formulating an energy functional for 
sequence optimization specifically for segmentation. In particular, we can compute the probability of mistakenly labeling 
a voxel as class c1 when the true class was c2 as a function of the MR parameters m: 
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The total probability of misclassification at a voxel r is then given by: 

(10) ∑∑
≠

=
21 2

)),(|)((),( 21
cc c

ccpp mrrmr  

By writing the synthesized images Ii=S(mi) as functions of the MR parameters mi=[TRi,TEi,α i]T using equation 
(2), we can integrate equation (10) over space to yield an overall measure of the ambiguity associated with a 
certain combination of MR parameters: 
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We then seek the combination of MR parameters m that minimize this ambiguity over all pairs of tissue classes that occur 
together anywhere in the brain: 
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The likelihood terms p(I|ci(r)) are assumed to be normally distributed with means and covariances given by equations (7) 
and (8) 

(13) )ˆ,ˆ(~))(|( ccNcp ΣµrI  

Equation (9) is integrated over the region of intensity that is nonzero for both classes c1 and c2, typically +-5 standard 
deviations from the mean. Minimizing equation (12) thus amounts to reducing the amount of overlap of the distributions 
for tissue classes that are likely to occur at the same location. 

It is important to note that the ambiguity measure captures the difficulty of segmentation in several crucial ways. First, 
                                                      
2 Note that transmit inhomogeneities can also affect P via the principle of reciprocity.  If the transmit and receive coils are the 

same then this completely defines the bias field. Transmit inhomogeneities also introduce a space-varying gain factor on the flip 
angle, which is much more difficult to deal with than standard bias fields as it changes image contrast. Fortunately, at 1.5T with a 
body transmit coil this effect is minimal. 
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it allows the intrinsic properties of the tissue classes to vary over space, as the ambiguity is computed separately for each 
atlas location. This is important, as the tissue characteristics do show considerable spatial variability, as will be shown in 
section 3.1 Second, only tissue classes that co-occur in a given atlas voxel contribute to the ambiguity. Thus, the difficulty 
of segmenting for example cortical gray matter from dura would effect the sequence optimization, but not cortical gray 
matter from the caudate, as these structures never occur in the same region of atlas space. 

2.4. Developing multi-echo FLASH acquisitions. 
The FLASH protocol used above is available on the vast majority of clinical scanners. As such, this sequence is 

limited in that it doesn’t take advantage of recent advances in imaging hardware and acquisition techniques. In particular, 
it is typically a relatively low bandwidth sequence, implying that distortions due to magnetic field inhomogeneities and 
susceptibility artifacts can be substantial. The low bandwidth is of course used to increase SNR. In general, there is a 
trade-off between high-bandwidth, low distortion, low SNR images, and low-bandwidth, high-distortion, high-SNR 
images. That is, SNR and distortion both go down with bandwidth. 

In order to avoid this trade-off, we have developed a high-bandwidth multi-echo flash (MEF) sequence that minimizes 
distortions while maximizing SNR. In a single 8 minute scan, the same amount of time required for a 1.3x1x1mm single-
echo FLASH scan, this sequence provides 8 high-bandwidth images at different echo times. While the individual scans 
can be quite noisy, the information in the ensemble is significantly greater than the low bandwidth FLASH scans. In 
addition, the higher bandwidth of the multi-echo FLASH sequence, coupled with the fact that alternating echoes are 
collected with opposite read-out directions, results in less distortion in the images due to B0 effects (chemical shift and 
susceptibility distortion) [23]. This is particularly important for longitudinal studies in which different shim settings can 
result in substantial differential distortions between scan sessions for low bandwidth sequences. Physiologic and bulk 
motion during the readout also result in fewer artifacts due both to the shorter readouts of the multi-echo sequence, and to 
the averaging of the readouts with alternating directions.  Finally, image reconstruction techniques can exploit the 
alternating readout direction to recover parts of the image previously lost due to susceptibility artifacts [24-26].  While 
these reconstruction techniques are usually applied to EPI, they can also be adapted for use with multi-echo FLASH 
images. 

The MEF sequence was generated by modifying the standard Siemens gradient echo sequence to allow up to 1024 
echoes following a single excitation pulse (although all results in this paper use 8 echoes).  The sequence can be run in 2D 
or 3D mode, and maintains the standard features of the Siemens sequence, such as the option to include preparation pulses 
commonly used to generate magnetization transfer contrast.  We increased the amount of gradient spoiling to eliminate 
artifacts in the images and developed a modified image reconstruction program to conveniently stream the raw k-space 
data to additional storage on the image reconstruction computer. A non-selective 100 µs rectangular pulse provides the 
excitation. Prephasing pulses on all three gradients select the starting point in k-space for the particular set of lines as 
usual for a 3D sequence.  The same line is read back and forth during the train of pulses on the readout gradient and the 
integral of the gradients determines the position in k-space. Since the readout gradients for adjacent readouts have 
opposite polarities, the direction of the k-space traversal alternates direction, and errors in the trajectory due to B0 errors 
also alternate in effect. A gradient echo is formed at the center of each readout.  Dephasing gradients on the two phase 
encoding gradients refocus the gradients so that the integral is zero.  Spoiling is done on the readout gradient where an 
additional pulse after the last readout is added so that the total integral in the readout direction is 4 times the integral under 
each readout gradient. 
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Figure 1: Multiecho FLASH sequence timing diagram with 8 echoes, non-selective RF excitation and 3D encoding. 

Finally, we have preliminary data suggesting that this sequence has significantly better test-retest replicability both 
within and across sites, a critical issue for longitudinal analysis of morphometric changes. Specifically, the variance in 
intensity values is significantly reduced relative to low bandwidth FLASH and MP-RAGE sequences due presumably to 
the high bandwidth of the MEF sequence, as will be shown in section 3.3. 

2.5. Nonlinear Transform. 
While the linear registration procedure outlined in [5] accounts for much of the anatomical variability across subjects, 

there is clearly much room for improvement. Nonlinear extensions to this type of inter-subject registration procedure have 
been extensively investigated [11, 27-31]. Most of these techniques have error functionals with two types of terms – data 
driven terms (e.g. aligning like intensities) and smoothness terms (e.g. generating morphs with minimal metric distortion). 
Here we extend this type of cross-subject registration to account for the fact that while smoothness of the deformation is 
reasonable within tissue class, it is not desirable to enforce such constraints across the border between structures.  

For example, many neurodegenerative disorders result in a contraction of either cerebral white matter or cortical gray 
matter, and a concomitant expansion of the ventricular system. Thus, a shock exists in the metric properties of the 
mapping at the border between the ventricles and the white matter in which adjacent locations in the brain are 
experiencing deformations with very different characteristics. In order to model this type of deformation, we disable the 
smoothness constraints on the evolving vector field across the border between structures. Specifically, we use an energy 
functional with five terms, similar to [32], one to encourage smooth deformation fields, one maximizing the log likelihood 
of the image given the class at each atlas location, one ensuring invertibility, and one minimizing within class metric 
distortion, and one that discretizes the probability field directly, as will be described below: 

(14)  LLSSMMTTI GGGGGG λλλλ ++++=  

where GI is an intensity term, GT is a topology constraining one, GM is a metric preservation term, GS is a smoothness term 
and GL is a label term, each of which is described in detail below. 

Considering the atlas an array of V nodes at locations ri, we can write the image likelihood in discrete form as: 
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where µc and Σc are the mean vector and covariance matrix for class c respectively (predicted for the acquisition 
parameters of the input scans, as detailed in section 2.2), and vi is the vector field that we are seeking. The topology term 
GT is given by: 
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where Ai
0  is the determinant of the Jacobian of the initial linear mapping, and Ai

t is the determinant of the current 
mapping. The nonlinearity in (16) only penalizes regions that are highly compressed or negative definite, and thus the 
coefficient on this term can be set to an arbitrarily large value as it only affects regions that are either noninvertible or 
almost noninvertible. 

The metric distortion of the morph can be computed in a straightforward manner as the mean squared difference 
between the distance of the nodes at time t denoted dt, and their original distance d0. In a similar manner, the smoothness 
of the deformation can be quantified as the difference between the vector at location i and the mean of its neighbors. We 
then modulate the metric term with the Kroneker delta δij, in order to limit its application to within a neuroanatomical 
label, where δij=1 if the highest probability class labels at locations ri and rj are the same, and 0 otherwise. Denoting the 
set of (6) neighbors of each node by N(i), these terms are given by:  
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Density-based morphing 
Most volumetric inter-subject morphing procedures assume an additive Gaussian noise model. For the scalar case, this 

gives rise to a log likelihood term that is the scalar analog of equation (15) : 
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Differentiating (19) with respect to the atlas coordinate f(r) we are seeking, results in: 
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where the gradient is taken with respect to the coordinates f(r). Equation (20) simply states that if the image intensity at 
f(r) is smaller than the atlas at r, then f should be adjusted such that f(r) maps to a new point r’, where r’ is in the direction 
of ∇I(f(r)) with respect to r. At first glance, one would think that discretizing (19) would result in a similar minimization 
to discretizing (20). However, this is not the case, as implementing minimization techniques based on (20) can result in 
incorrect solutions, a problem not suffered by the direct discretization of (19). To see why this is the case, consider a one 
dimensional registration problem in which the image consists of 3 voxels, and the atlas consists of a single one. 

Figure 2. One dimensional sample image. 

Further, assume the initial conditions are such that the atlas point with mean µc and unit variance is initially aligned 
with the central voxel. Given this configuration, let us examine the gradient of (19) given by direct discretization and 
interpolation of –log(p(I(r)|f,c)  ) versus discretizing (20) and computing –log(p(I(r)|f,c) by interpolating image values, as 
is more commonly done. This situation is depicted in Figure 3, with the interpolated image values shown in green, the 
direct interpolation of –log(p(I(r)|f,c) in blue, and –log(p(I(r)|f,c)  computed from the interpolated image in red. Note that 
at the central point (voxel #1 on the x axis), the gradient of the red and blue curves point in opposite directions. 
Specifically, interpolating the image first results in the movement of the atlas point towards the right, as the error 
functional decreases more sharply in that direction. This is a direct result of the assumption of continuity in the image – 
since voxel #1 has a value of µc/2 and voxel #2 has a value of 2µc, continuity implies that somewhere between the two is a 

µc 0.5∗µc 2∗µc 
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point with exactly the value of µc. Unfortunately, in magnetic resonance imaging, this will not in general be the case. In 
fact, partial volume effects frequently cause the truth to lie towards the opposite extreme. That is, if we assume that the 
true underlying image is made up of piecewise constant regions corresponding to different objects being imaged, with 
noise added and blurring induced by the imaging process (such as partial volume effects), then the intensity distribution 
induced by imaging the underlying objects are less continuous then the actual ones. In this case, interpolating image 
values can lead to incorrect results. Directly interpolating the probability field (or its log), however, avoids these problems 
as the assumption of continuity is not violated. Another way to look at this issue is that interpolation should be done after 
nonlinearities, resulting in the more reasonable interpolation of the blue line in Figure 3, the gradient of which points in 
the correct direction. 

 
Figure 3. Example of errors induced by interpolating I instead of p(I|f). 

Unfortunately resolving this problem requires a significant increase in computational complexity. If a scale-space 
approach is to be taken, the probability field (or its log) must be smoothed as opposed to the image. This implies that a 
smoothed probability field must be generated for every atlas point (as each one has different means and covariance 
matrices) at each step in the numerical minimization. Instead of replacing the likelihood term GI in (15) , we implement a 
preliminary version of the density-based morphing only for white matter regions inferior to the hippocampus and append 
it as a separate term GL with coefficient λL in (15), as it is these regions that most frequently misalign due to very bright 
blood vessels inferior to cortex in this part of the brain. Note that this term is essentially identical to equation (5), but its 
numerical implementation and smoothing must be done quite differently, as a smoothed probability field must be 
computed for each atlas location separately, then its derivative with respect to a change in the associated vector results in 
the delta that must be applied to the current vector field. 

Equation (15) is minimized using a multi-scale line minimization, as outlined in [33]. The tissue classes c are initially 
assumed to be the class with the highest prior probability at each location. After the minimization of (15) converges, the 
classes are re-estimated to be those with the highest posterior density. The minimization is then repeated, and the classes 
re-estimated until the entire procedure converges, with the topology checked at each step of the integration, to insure 
invertibility. 

3. Results. 

3.1. Intrinsic tissue parameter distributions. 
Preliminary results of the intrinsic tissue parameter estimation procedure are given in Figure 4, which was generated 

by minimizing equations (5) and (6), assuming that the noise is independent and identically distributed, to estimate T1 and 
PD from 5 FLASH scans (fov=240mmx240mm, matrix=256x256, slice thickness=1.5mm, 
TR=18ms,18ms,20ms,20ms,20ms, α=3o,5o,20o,20o,30o). 

I(x) with linear interpolation 

 
-log(p(I(x)|f,A)) computed from 

linearly interpolated I(x)

-log(p(I(x)|f,A)) interpolated directly 
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Figure 4. Tissue parameter estimation. Left: map of T1, Right: map of proton density (regions of low PD have been 

masked as the T1 estimates are arbitrary there). Note the colorscale at the left is only for the T1 image, the PD values are 
arbitrary. Note also that regions outside the skull with extremely low PD values in which the T1 estimates are arbitrary 

have been masked. 

Distribution of T1 by tissue class. 
In this study, 4 FLASH  images (1.5T, TR=20, TE=min, fov=240x240, matrix=256x256, α=3o, 5o, 20o, and 30o) were 

acquired for each of 8 healthy subjects (5M, 3F, ages 21-37, mean 25.5+-6.1) and the parameter estimation procedure 
detailed in section 2.1 was applied to yield maps of proton density and T1. Each of the subjects was manually labeled 
using the procedures given in [34], and The T1 maps were combined with the segmentations in order to estimate the 
distribution of T1 on a structure by structure basis.  The results of this study are given in Figure 5. Note the variability in 
some structures, such as cortical gray matter, while others have very tight T1 distributions, such as the pallidum. The 
maximum likelihood estimate of the T1 for each structure is given in the title bar of each figure. There are a number of 
interesting points to note in this dataset. First, the rightwards tail of many of the distributions is caused by the partial 
volume effects with CSF, which has an extremely long T1. This and the coloring effect of the nonlinearity involved in 
inverting equation (2) result in the non-Gaussian nature of the distributions, indicating the desirability of classifying in the 
signal space where the Gaussian assumption if more valid. 
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Figure 5. T1 distributions by structure. 

Distribution of T1 across the cortex. 
The parameter estimation procedure can be combined with cortical surface models [35-37] and high-resolution inter-

subject averaging procedures [33] in order to compute maps that reveal the spatial distribution of T1 across the cerebral 
cortex. In this study, 10 healthy subjects (4M/6F, ages 22-34, mean 25.7+-5.5) were scanned using the same protocol 
detailed above, and parameter maps were generated in the same way. Equation (2) was then used to synthesize a strongly 
T1-weighted image with a flip angle of 30o, which was used as input to automated cortical surface reconstruction 
procedures [35-37] to generate explicit models of both the gray/white junction and the pial surface.  The T1 and proton 
density of the cortical gray matter were estimated at each position on the surface of each subject by sampling at the 
midpoint of the cortical ribbon defined by these surfaces. These T1 maps were then averaged using a spherical morphing 
procedure that aligns cortical folding patterns [33]. 

 
Figure 6. Average maps of T1 in cortical gray matter for the left hemisphere (left) and right hemisphere (right) across 

10 subjects, shown in lateral (top), ventral (middle) and medial (bottom) views. 

The results of this analysis are given in Figure 6, for the left and right hemisphere (left and right), in lateral (top), 
inferior (middle) and medial (bottom) views of an average inflated surface. Note the spatial heterogeneity of the tissue 
characteristics across the surface, with limbic and association cortices having significantly longer T1 (and hence darker 
gray matter) than other cortical regions, agreeing with other published studies [38-40]. This spatial variability underscores 
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the difficulty of the segmentation problem as the underlying characteristics of the tissue are changing across space in a 
way that cannot be accounted for by a multiplicative bias field correction. 

There are several possible confounds to this analysis. The principle one is that the results reflect inhomogeneities in the 
RF transmit field, which would then masquerade as T1 variability due to the erroneous assumption that the flip angle is 
constant across space in equation (2). These inhomogeneities would derive from two sources – dielectric resonance, and 
the sensitivity profile of the transmit coil.  While dielectric effects cannot be ruled out entirely, we think they are unlikely 
to be a major source of error in this study as it was carried out exclusively at 1.5T where dielectric effects are minimal. In 
addition, the pattern of T1 variability is not what one would expect from dielectric resonance, in which a radially 
symmetric pattern is typical. Similarly, transmit inhomogeneities due to the coil are unlikely to be a major source of error 
as a body transmit coil with an extremely uniform spatial profile over the head was used in all data acquisition.  An 
additional point to note is that the T1 estimates are completely insensitive to the more standard bias fields due to the 
sensitivity profile of the receive coil, as these effects, being multiplicative, are accounted for in the PD estimates. 

Partial-volume effects are harder to avoid, particularly in thin regions such as primary sensory ones.  We minimize 
these effects by sampling at the midpoint of the cortical ribbon. One indication of the effectiveness of this technique is 
that, the primary sensory areas typically show shorter T1 than the average, whereas partial volume effects should bias the 
estimates of the T1 in gray matter to be longer than the true value due to the extremely long T1 of CSF. 

3.2. Sequence optimization. 
The sequence optimization procedure detailed in section 2.3 is a quite general one. In this section, we present results 

for optimal acquisitions for one, two and three standard single-echo FLASH images. In all cases we hold TR and TE 
constant in (20ms and 6ms respectively) order to fix the image noise, and the flip angles induced by the vary RF 
excitation. Note that the noise parameter λ in (8) was varied across 3 orders of magnitude without substantially changing 
the results, and was ultimately fixed at λ=100 for all studies presented here. 

Optimal single angle acquisition 
One important advantage of phrasing the sequence optimization as in equation (12) is that one has the freedom to 

restrict the classes c1 and c2 that are considered. In this section, we carry out an optimization for a single FLASH 
acquisition in order to determine the optimal flip angle for segmentation purposes. This is done across all classes, as well 
as on a class-by-class basis, in order to determine, for example, the optimal flip angle for segmenting hippocampus from 
all other structures that it abuts. It is important to note that the minimum ambiguity for each structure is not simply 
determined by the flip angle that maximizes the signal-to-noise ratio (SNR) of that tissue class, which would be given by 
the Ernst angle. For example, for cortical gray matter, which has a T1 of approximately 1300 msec at 1.5 Tesla, the Ernst 
angle for a TR of 20 msec would be 10.0o.  However the optimal flip angle for segmenting cortical gray matter from other 
structures that it is adjacent to is 21o, reflecting the T1/PD characteristics of cerebral white matter, CSF and dura that the 
gray matter must be distinguished from.  

Figure 7 gives the ambiguity measure for a set of structures for flip angles from 0 to 50o, with the optimum given in the 
title of each figure. Most structures share a characteristic U-shaped curve, with very low flip angles resulting in very low 
signal and hence high ambiguity. The ambiguity then typically reduces until the global minimum is reached between 15o 
and 25o. The upward spike in many of the plots that occurs at approximately 7o or 8o no doubt reflects the isointensity 
point of gray and white matter. In contrast, the ventricular plots, particularly the lateral ventricles and the third ventricle, 
show increased ambiguity at lower flip angles due to the gray/CSF isointensity point, which occurs at about 5o. This effect 
is also apparent in the ambiguity curve for the caudate, due to its proximity to the lateral ventricles for much of its extent, 
again highlighting the fact that the optimal acquisition parameters reflect the properties of a structure, and the properties 
of the structures that occur near it. 
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Figure 7. Ambiguity for various brain structures versus flip angle. 

 

Optimal dual-angle acquisition. 
Most morphometry studies have sufficient acquisition time for at least two 3D structural images to be acquired. These 

images most commonly have the same pulse parameters, allowing them to be easily motion corrected and averaged, 
resulting in a √2 improvement in the noise. In order to investigate the efficiency of this approach we again held TR and 
TE constant, while allowing two flip angles to vary from 0 to 60o. We fixed TR to be 20 ms, resulting in an acquisition 
time of approximately 16.5 minutes. The results of this analysis are given in Figure 8, which plots –log(A) for pairs of flip 
angles. Note the shoulder in the graph that runs parallel to the x and y axes, indicating the optimum pair of flip angles is 
comprised of a low (6o) and a high (21o) angle. Intuitively this makes sense, as the low and high flip angle images contain 
qualitatively different information, being strongly proton density and T1-weighted respectively. The ambiguity is 
relatively insensitive to the exact value of the larger flip angle, as evidenced by the gentle slope of the plot in the region 
around 20o. 

 
Figure 8. –log(A) measure for 2 FLASH scans with different flip angles. The minimum ambiguity (a maximum in the 

–log(A) plot) occurs at the location 6o,21o indicating that having different contrast properties in the two images helps the 
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segmentation procedure (the 6o would be strongly proton density weighted, and the 21o strongly T1 weighted). 

Optimal triple-angle acquisition. 
In this study, we searched the full 11 dimensional space to find the optimal triplet of flip angles for segmentation 

purposes. This is a difficult global optimization problem due to its high dimensional nature. That is, 3 flip angles must be 
searched over, each of which contains an eight-dimensional optimization (two classes, 3 spatial dimensions and 3 intensity 
dimensions). Carrying this calculation out for the >8000 flip angle triples required over 80,000 hours of compute time on 
our 200 node Beowulf cluster, with the optimum occurring at 5o,16o,31o. As might be expected, the addition of a third flip 
angle occurs in the middle of the previous two, and pushes them outwards so that the low flip angle is lowered, and the 
higher one is increased. 

3.3. Multi-echo FLASH  
An example of images acquired using the multi-echo FLASH sequence is given in Figure 9, which shows the echoes 

(left to right) of a 5o (top) and a 30o (bottom scan), with increasing echo numbers going from left to right.  The sequence 
was run in 3D mode with timing approximately as shown in Figure 1 (note that the duration of the readout ramps has been 
exaggerated for visualization purposes).  The sequence has 8 echoes following each excitation pulse, a bandwidth of 651 
Hz/pixel for each readout, a voxel size of 1.3 x 1.0 x 1.3 mm with a field of view of 256 mm and 128 partitions (192 x 
256 imaging matrix).  Acquisition time is 8 minutes and 12 seconds. 

 

 
Figure 9. MEF acquisitions. Top: proton density weighted scan on a 1.5T Siemens Sonata (TR=20 msec, flip angle=5o, 

bandwidth=615 Hz/voxel, TE=1.85, 3.67, 5.49, 7.31, 9.13, 10.95, 12.77, 14.59 msec). Bottom: T1-weighted scan (flip 
angle=30o, other parameters same as above). 

An additional advantage of this sequence is that the acquisition of data at varying echo times allows the explicit 
estimation of T2* from a single 8 minute scan set. Examining the two image sequences in Figure 9, the T2* decay is 
apparent, as the images get uniformly darker from left to right. Using a log-linear fitting procedure, we used manually 
drawn ROIs in the cortical gray matter and the underlying white matter to estimate T2* for each tissue class for both 1.5T 
and 3T scanners. The results of this analysis are given in Table 1 for 1.5T (top row) and 3T (bottom row). 

Field Strength Gray Matter T2* White Matter T2* 
1.5T 75 msec 55 msec 
3T 68 msec 53 msec 

Table 1. T2* values for gray matter and white matter at 1.5T and 3T. 

Optimizing multi-echo flash for segmentation 
In order to gain some intuition as to the contrast properties of the different echoes in the MEF acquisition, we manually 

labeled an ROI in the cortical gray matter and another in the cerebral white matter. The ROIs were chosen in perirolandic 
regions where the contrast-to-noise ratio (CNR) between gray and white is reduced relative to other cortical regions, due 
to intrinsic variations in the tissue parameters.  The CNR between gray and white matter in this region is quantified in 
Figure 10 for the 30o (left) and 5o scans for each of the 8 echoes. 
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Figure 10. CNR between gray and white matter as a function of echo # for 30o (left) and 5o images (right). 

As can be seen from these plots, the gray/white CNR generally decreases with increasing echo number for the 30o 
scan, and increases for the 5o scan. We then used the T2* values tabulated in Table 1 and equation (2) to simulate the 
evolution of the contrast properties of the different flip angles with increasing echo time. The results of this analysis are 
given in Figure 11. Examining this figure, it is apparent that the longer T2* of GM results in it darkening more gradually 
than WM, implying that for scans in which it is initially darker (such as the 30o), T2* decay will reduce CNR at longer 
echo times. Conversely for scans in which GM is initially brighter than WM  (such as the 5o), the converse holds and the 
T2* effect will increase the CNR at longer echo times. An additional observation of note is that much of the contrast in a 
“proton-density weighted image” seems to be due to T2* decay, implying longer TEs will increase CNR for low flip angle 
FLASH scans. An additional implication of these results is that the optimal method of combining the different echoes is 
not simply to average them, but rather to weight them unequally based on their contrast. In future work, we will 
implement an optimization procedure to minimize the ambiguity A given by equation (11) as a function of echo 
weighting. 

 
Figure 11. T2* decay curves for gray matter (solid) and white matter (dotted) at 30o (left) and 5o (right). 

Multi-echo FLASH test-retest stability. 
In order to assess the test-retest repeatability of the multi-echo FLASH acquisition protocol, we acquired 4 images for 

each of three different acquisition types (single echo FLASH, MP-RAGE [41] and multi-echo FLASH) within a single 
scan session. The images were each rigidly aligned to the first acquisition of each type [42]. Non-brain tissue in these 
images was removed using a hybrid watershed/deformable surface algorithm [43], resulting in 4 coregistered brain images 
for each structural image type. The intensity values in each scan were then scaled to be a fraction of the mean brain 
intensity value, and the cross-scan intensity standard deviations were computed at each voxel. The mean of these values 
across the brain represents the stability of the intensity of each acquisition type, from scan to scan. The results of this 
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analysis are given in Figure 12 for standard MP-RAGE (left), FLASH (center) and multi-echo FLASH (right). Note that 
the standard errors of the mean are too small to see on this plot, indicating that all the results are significant (due mainly to 
the large number of degrees of freedom in the standard error calculation – one for each brain voxel). As can be seen, the 
test-retest intensity variation is significantly reduced in the MEF acquisitions, a critical issue for longitudinal analysis of 
morphometric changes. Presumably, the reduction in the variance in intensity values is due to the high bandwidth of the 
MEF sequence, whereas the higher variability of the MP-RAGE is due to its relatively low SNR with respect to FLASH 
acquisitions (due among other factors to its high bandwidth). 

 
Figure 12. Test-retest intensity variation for 3 different structural acquisition protocols. 

3.4. Nonlinear density-based morphing. 
As pointed out in section 2.5, discretizing the gradient of the standard log likelihood term commonly used in nonlinear 

image registration can result in incorrect results. This is due to the assumption of spatial continuity implicit in this 
derivation. In this formulation, extremely bright structures in the image will attract atlas regions that are initially aligned 
with low-intensity portions of the image. Computing the gradient of the discretized log likelihood instead can resolve this 
problem, as illustrated in Figure 13, which shows a representation of the atlas (top left), the initial image after optimal 
linear alignment (top right), and the final aligned image without (bottom left) and with (bottom right) a term discretizing 
the likelihood instead of its derivative. Note the distortions induced by very bright blood vessels in inferior temporal 
regions. Computing the gradient after discretization (bottom right) instead of before (bottom left) can resolve this issue, as 
atlas voxels are attracted to regions of high probability instead of along the intensity gradient. 

It is important to note that this problem is exacerbated if a standard scale-space approach is taken, and ∇I is convolved 
with a large Gaussian in the initial stages of the numerical minimization. In this case, the interpolation of gradient values 
is carried out over long distances, resulting in effects such as those seen in Figure 13: all atlas near the edge of the brain or 
the ventricles that are initially aligned with image locations brighter than µc(r) are drawn towards the outside of the brain 
or towards the ventricles as the image intensity gradient points in these directions. Note that the presence of the label term 
eliminates this effect and properly aligns the temporal white matter, even in the presence of dramatically enlarged 
ventricles (bottom right). 
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Figure 13. Distortions induced by intensity-based morphing that can be eliminated with discretization of the 

probability field. Top left: target image. Top right: initial image after optimal linear alignment. Bottom left: morph results 
with λL=0. Bottom right: morph results with λL=1. Note that the red cross-hair represents corresponding points across all 
images, and the green arrow indicates the location of a blood vessel in the atlas. λs=1, λT=1, λL=0 (bottom left) or λL=1 

(bottom right), λM=0, k=5 in equation (14). 

3.5. Cross-Sequence Segmentation. 
In order to test the sequence independence of the segmentation procedure, nine FLASH scans were acquired on a 

single subject (TR=20msec, TE=6 msec, flip angles α=30o, 2o, 15o, 3o, 10o, 20o, 4o, 7o, 25o). Each set of three consecutive 
scans (consisting of a low, a middle and a high flip angle) was used to separately estimate β using equations (5) and (6). 
The forward Bloch equation (2) was then used to synthesize an image for each set with α=30o. These images were labeled 
using the technique described in [5], and the volumes of 14 major brain structures were computed for each of the three 
datasets. The results of this study are given in Figure 14. As can be seen, the mean difference in the structure volumes 
between the scans was found to be 1.8%, indicating the insensitivity to the image contrast found in the original data. 
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Figure 14. Test-retest structure volumes measured from three separate datasets (dark, medium and light bars) acquired 
on the same subject. Note that each dataset had different acquisition parameters (LV=lateral ventricle, HP=hippocampus, 

TH=thalamus, CA=caudate, PU=putamen, PA=pallidum, AM=amygdala). 

In a final study, 4 FLASH images (1.5T, TR=20ms, TE=min, fov=240x240, matrix=256x256, α=3o, 5o, 20o, and 30o) 
were acquired for each of 8 healthy subjects (5M, 3F, ages 21-37, mean 25.5+-6.1).  A jackknifing procedure was used to 
generate an atlas for each subject by using the remaining seven subjects’ data. In order to simulate the variability in 
acquisition parameters, each subject’s 4 FLASH scans were grouped into 4 sets of two, consisting of a high and a low flip 
angle (3o,20 o), (3 o,30 o), (5 o,20 o), (5 o,30 o). Each of these scan pairs was then registered and labeled using equation (7) 
and (8) to map the atlas into the appropriate FLASH space. The mean and standard errors across subjects for 4 brain 
structures for each of the scan pairs is given in Figure 15, together with the mean and standard error of the manual 
labeling (in blue). The agreement of the structure volumes across flip angle is in general quite good, with a mean variation 
of less than 3% (standard deviation/mean=2.9%, mean across structures). The residual variability may be due to poorly 
regularized estimates of the covariance structure. This leads to ill-conditioned inverse covariance matrices being used in 
the estimation of the image likelihood, and hence errors in the MAP estimates of the segmentation. This type of problem 
may be improved by regularization techniques such as those suggested in [44-47]. In addition, there are many MRI effects 
not modeled by (2) such as magnetization transfer, inflow effects, etc…, which may also contribute to the residual 
variability. 
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Figure 15. Structure volumes for different pairs of flip angles across 8 subjects. Structures: lv=lateral ventricles, 

hp=hippocampus, th=thalamus, ca=caudate, pu=putamen, pa=pallidum, am=amygdale, bs=brainstem, 3rd=third ventricle, 
4th=fourth ventricle (blue=manual, cyan=3o,20o, green=3o,30o, orange=5o,20o, red=5o,30o). 

4. Conclusion. 

Current anatomical studies are frequently limited by the requirement that the initial MR protocol used be held fixed 
throughout the length of the study. This is due to the fact that automated and semi-automated techniques are typically only 
optimized for a given MR pulse sequence. Thus, measurements of structural properties may vary as a function of the 
particular sequence used in acquiring the data. This is of course undesirable, particularly for longitudinal studies that are 
then unable to take advantage of advances in imaging technology.  

The ability to combine data across sites in neuroimaging studies would also be of great potential utility, as it would 
facilitate the analysis of large subject populations. Unfortunately, this type of cross-site study is frequently hampered by 
the lack of standard parameter settings for structural MRI acquisition. This problem is again compounded by the 
dependence of post-processing software on a particular set of acquisition parameters. 

High-resolution structural MR images are usually generated from so-called “T1-weighted” pulse sequences. 
Nevertheless, all structural scans also image the density of protons in the underlying tissue, as well as the transverse 
relaxation time T2* (or T2 for spin-echo sequences). Thus, it is impossible to infer from changes in a single type of 
structural scan which of these tissue parameters (i.e. T1, T2, T2

* and proton density) is responsible for the variation. T1-
weighted morphometry must therefore frequently be solely phenomenological, or descriptive, as opposed to providing a 
more comprehensive understanding of disease processes. As part of the current work, we have extended a standard 
clinical sequence (FLASH) in order to allow the estimation of transverse relaxation time T2*. An additional benefit of this 
sequence is that it has a high bandwidth, essentially eliminating geometric distortions and signal loss due to magnetic 
susceptibility interfaces. The multi-echo nature of the sequence allows the high bandwidth to be achieved without 
sacrificing SNR, and has the added benefit of reducing test-retest intensity variability. 
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In this paper, we have presented a set of techniques to address the problems associated with the sequence dependence 
of morphometry tools. First, we derived and implemented a parameter estimation procedure that yields measures of 
intrinsic tissue properties, rather than the somewhat arbitrary intensity of an MR image. These parameters can be derived 
from a set of standard structural scans (SPGR/FLASH), and are properties of the tissue and hence insensitive to changes in 
the acquisition parameters. We then embedded the solution to the steady state Bloch equations into the registration and 
segmentation procedures, allowing the prediction of the intensity distributions of the underlying structures for any set of 
MR acquisition parameters. The segmentation and registration thus use the physics of image formation in order to map an 
atlas into the signal space of a novel image. This results in procedures that are largely invariant to variations in the 
acquisition details, as these variations are explicitly modeled. 

The explicit estimation of the underlying tissue parameters may also be beneficial for detecting pathology-related 
changes in T2*, T1 and proton density. In particular, these changes may be correlated but have opposite effects on image 
contrast, making them difficult or impossible to detect from a single T1-weighted image. This type of alteration in the 
imaging properties of the tissue, possibly due to processes such as cell death or gliosis, may entail changes in the 
parameters but not in morphometric properties such as volume. Variations of this nature would thus be undetectable to a 
standard morphometric analysis procedure, but would be clearly revealed by cross-group comparison of the tissue 
parameters. 

Another advantage of embedding models of the physics of image formation into the segmentation procedure is that it 
allows the explicit optimization of the imaging parameters for the segmentation to be used on them. This can be carried 
out for all tissue classes, or can be naturally restricted to a subset of the structures that can be labeled. This optimization 
reveals that ambiguity in the segmentation is minimized by the conjunction of proton density and T1-weighted images, in 
contrast to the more standard practice of acquiring two strongly T1-weighted images and averaging them. 
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