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Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A
confounding factor is head motion. Children move more than adults, older adults more than younger adults,
and patients more than controls. Head motion varies considerably among individuals within the same
population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement,
maximum head displacement, the number of micro movements (N0.1 mm), and head rotation were
estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T
scanners. The majority of fcMRI variation across subjects was not linked to head motion. However, head
motion had significant, systematic effects on fcMRI network measures. Head motion was associated with
decreased functional coupling in the default and frontoparietal control networks — two networks
characterized by coupling among distributed regions of association cortex. Other network measures
increased with motion including estimates of local functional coupling and coupling between left and right
motor regions — a region pair sometimes used as a control in studies to establish specificity. Comparisons
between groups of individuals with subtly different levels of head motion yielded difference maps that could
be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting
variation between groups and across individuals.
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Introduction

Resting-state functional connectivity MRI (fcMRI) is widely used
to explore the architecture of brain systems. Studies of differences
across the lifespan, between individuals with clinical diagnoses, and
across varied personality traits have become common (for recent
reviews, see Fornito and Bullmore, 2010; Fox and Greicius, 2010;
Vogel et al., 2010; Zhang and Raichle, 2010). The technique is robust
and yields reliable measures within individuals (e.g., Honey et al.,
2009; Meindl et al., 2010; Shehzad et al., 2009; Van Dijk et al., 2010;
Zuo et al., 2010). Recent family and twin studies suggest functional
connectivity estimates are heritable and thus may offer insight into
how genetic variation affects brain function (Fornito et al., 2011;
Glahn et al., 2010). However, there is general awareness that resting
state fcMRI is sensitive to confounding factors including head motion
even after common data preprocessing steps (Buckner, 2010; Cole
et al., 2010). Head motion has long been known to be a confound in
task-based functional MRI studies, but has become a particularly
challenging problem in recent studies using fcMRI. Effects of interest
are often between groups of subjects where differences in motion are
expected such as between children and young adults, between young
and old adults, and between patients and controls. The present paper
explores how head motion affects measures of functional
connectivity.

Methods

Overview

The primary focus of the paper is to explore how between-subject
differences in head motion affect MRI measures of intrinsic functional
connectivity. A large sample of data from typical, healthy control
subjects ages 18 to 30 were selected (n=1110). All subjects were
imaged on matched MRI scanners using the same MRI sequence.
Subjects with artifacts or abnormally low temporal signal-to-noise
(tSNR) were eliminated but otherwise the sample represents a typical
convenience sample of good to excellent quality data. The movement
properties of the remaining sample (n=1088) were characterized to
illustrate the dispersion. Functional connectivity metrics were then
estimated for 1000 subjects. Head motion was explored as a
continuous variable to determine how it affected various functional
connectivity metrics including correlation strength among regions
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within the default network, the frontoparietal control network, the
motor network, and for a measure of local functional coupling. Then,
subjects were divided into 10 groups representing those individuals
who moved the least (Group 1) to those individuals who moved the
most (Group 10). Group difference maps were constructed to
illustrate how differences can arise in functional connectivity analyses
when the only known major difference between the groups is head
motion. As a final analysis we explored whether between-subject
differences in head motion are stable over time.

Subjects

Paid participants were clinically normal young adults with
normal or corrected-to-normal vision, without a history of
neurological or psychiatric illness, and not taking any psychoactive
medications (n=1110). Subjects were excluded if artifacts were
detected in the functional MRI data (n=2) and when the tSNR
from either of the two functional MRI runs was lower than 100
(n=20). The movement properties of the remaining sample
(n=1088) were characterized to illustrate the distribution. The
sample was divided into 10 bins representing those individuals
who moved least (Group 1) to those individuals who moved most
(Group 10) (Table 1). Subjects were randomly selected to form
groups of 100 subjects with the only constraint that either a male
or a female was removed, whichever made the groups most
balanced in terms of sex. In these 1000 subjects (ages 18 to 30;
mean age=20.6 yr; 57% female; 88% right handed) functional
connectivity was analyzed. Analysis of variance indicated that age
was evenly distributed across motion groups (F (9, 990)=1.14,
p=0.33), while sex was not (χ2 (9, 1000)=18.9, pb0.05). For the
results that follow it is important to note that Groups 1 and 10
differed significantly regarding sex distribution (χ2 (1, 200)=9.5,
pb0.01), while sex was equally distributed between Groups 3 and
8 (χ2 (1, 200)=0.02, p=0.89) and Groups 5 and 6 (χ2 (1,
200)=0.08, p=0.77). A total of 42 subjects (ages 18 to 26; mean
age=20.1 yr; 62% female) were scanned on two separate days
within 1 year to provide a dataset amenable to test reliability.
Participants provided written informed consent in accordance
with guidelines set by institutional review boards of Harvard
University and Partners Healthcare.

MRI data acquisition

All data were collected on matched 3T Tim Trio scanners (Siemens,
Erlangen, Germany) located at Harvard University and theMassachusetts
General Hospital using the 12-channel phased-array head coil supplied by
the vendor. The functional imaging data were acquired using a gradient-
echo echo-planar imaging (EPI) sequence sensitive to blood oxygenation
Table 1
Demographics and Mean Motion displacement of study participants.

Group n Mean agea (SD) M/Fb Mean Motion in mmc (SD)

1 100 20.8 (2.4) 33/67 0.027 (0.002)
2 100 20.5 (2.3) 39/61 0.032 (0.001)
3 100 20.3 (2.2) 45/55 0.036 (0.001)
4 100 20.7 (2.5) 37/63 0.040 (0.001)
5 100 20.6 (2.1) 38/62 0.044 (0.001)
6 100 20.5 (2.4) 36/64 0.048 (0.001)
7 100 20.3 (2.1) 51/49 0.052 (0.002)
8 100 20.9 (2.8) 46/54 0.059 (0.003)
9 100 20.6 (2.4) 47/53 0.072 (0.005)
10 100 21.1 (2.5) 55/45 0.100 (0.021)
Total 1000 20.6 (2.4) 427/573 0.051 (0.004)

a Age was evenly distributed across groups.
b Sex distribution was significantly different across groups.
c Mean Motion = mean absolute displacement of each brain volume as compared to

the previous volume.
level-dependent (BOLD) contrast (Kwong et al., 1992; Ogawa et al.,
1992). Parameters were TR=3000ms, TE=30ms, flip angle=85°,
3×3×3mm voxels, FOV=216 with 47 slices aligned to the anterior-
commissure posterior-commissure (AC–PC) plane using automated
alignment (Van der Kouwe et al., 2005). Two BOLD runs of 124 volumes
eachwereacquired. Slice acquisitionorderwas interleaved. Earplugswere
used to attenuate scanner noise and head motion was restrained with a
foam pillow and extendable padded head clamps. Before each resting
state scan subjectswere instructed to simply rest in the scannerwith their
eyesopenwhile stayingas still as possible. Structural data includedahigh-
resolution multi-echo T1-weighted magnetization-prepared gradient-
echo image (multi-echo MP-RAGE; Van der Kouwe et al., 2008). Further
details of data acquisition can be found in Yeo et al. (2011).

Functional MRI data preprocessing

Data processing was conducted as it would be for typical fcMRI
data analysis including correction for within-subject headmotion. The
first four volumes of each run were discarded to allow for T1-
equilibration effects. Slice acquisition dependent time shifts were
corrected per volume (SPM2, Wellcome Department of Cognitive
Neurology, London, UK). Then, rigid body translation and rotation
from each volume to the first volume were used to correct for head
motion (Jenkinson et al., 2002, FMRIB, Oxford, UK). Atlas registration
was achieved by computing affine and non-linear transforms
connecting the first volume of the functional run using SPM2, with a
BOLD EPI template in the Montreal Neurological Institute (MNI) atlas
space (Evans et al., 1993). Data were resampled to 2-mm isotropic
voxels and spatially smoothed using a 6-mm full-width half-
maximum (FWHM) Gaussian kernel. Temporal (band-pass) filtering
removed constant offsets and linear trends over each run while
retaining frequencies below 0.08 Hz and the mean signal intensity
over the run was removed.

Several sources of spurious or regionally nonspecific variance were
removed by regression of nuisance variables including (i) six
parameters obtained by rigid body head motion correction, (ii) the
signal averaged over the whole brain (global signal), (iii) the signal
averaged over the lateral ventricles, and (iv) the signal averaged over
a region centered in the deep cerebral white matter. Temporally
shifted versions of these waveforms were also removed by inclusion
of the first temporal derivatives (computed by backward differences)
in the linear model. This regression procedure removes variance
unlikely to represent regionally specific correlations of neuronal
origin. Regression of each of these signals was performed simulta-
neously and the residual volumes were retained for the fcMRI
analysis. See Vincent et al. (2006) and Van Dijk et al. (2010) for
detailed descriptions of the above procedures.

Measurement of head motion

Four separate metrics of head motion were calculated from the
translationand rotationparameters fromthe rigidbodycorrectionofhead
motion (Jenkinson et al., 2002). The four metrics were: Mean Motion,
Maximum Motion, Number of Movements and Rotation. Mean Motion
represents the mean absolute displacement of each brain volume as
compared to the previous volume andwas estimated from the translation
parameters in the x (left/right), y (anterior/posterior), and z (superior/
inferior) directions. Maximum Motion was estimated as the maximum
absolute translation of each brain volume as compared to the previous
volume inx, y, andzdirections. Themeanandmaximumdisplacements in
3D space for each brain volumewere computed as the root-mean-square
(RMS) of the translation parameters (displacement=square root (x2+
y2+z2)) and expressed inmm. Number ofMovementswas estimated as
the number of relative displacements N0.1 mm in 3D space between
adjacent volumes. Thus, the metric is expressed as an integer with the
minimum possible value being 0 and the maximum n−1 where n is the
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number of acquired volumes in the study. Rotation was a single angle
measurement based on Euler's rotation theorem that expresses any 3D
rotation as a single angle and corresponding axis of rotation. Rotationwas
computed as the average of the absolute value of the Euler angle of the
rotation of each brain volume as compared to the previous volume. The
Euler angle can be computed using the following formula: arccos((cos
(phi)cos(theta)+cos(phi)cos(psi)+cos(theta)cos(psi)+sin(phi)sin
(psi)sin(theta)−1)/2), where phi, theta, and psi are the rotational
parameters around the three axes. For most analyses, we used Mean
Motion as the central metric of head motion but, as will be noted, use of
other metrics does not significantly change the results.

Measurement of temporal signal-to-noise ratio (tSNR)

tSNR was computed for each of the two resting-state functional
runs and used as another estimate of data quality. We have found that
tSNR using slice estimates is a good predictor of data quality and low
values identify subjects with high head motion or other causes of data
instability. Here we formally explored the relation of tSNR to motion.
For each subject, an inclusive brain mask was estimated that included
signal values N150. The mean signal across the BOLD run (exclusive of
the first four volumes during which T1-stabilization occurred) was
calculated for each slice, and then the mean value was divided by the
standard deviation of the signal intensity within the slice over time.
The mean tSNR value across all voxels in the brain mask served as the
measure of tSNR for the BOLD fMRI data.

Functional connectivity analysis

Four functional connectivity metrics were calculated targeting the
default network, the frontoparietal control network, the motor network,
and local functional coupling. For the three networks, Pearson's
correlation coefficients were computed between time courses that
were extracted from a priori spherical regions of interest (ROIs)
within each network. Fisher's r-to-z transformation (Zar, 1996) was
applied to each correlation coefficient in order to increase normality
of the distribution of correlation values. Functional connectivity was
then averaged across all pairs of regions within the network to form a
single composite metric of functional connectivity strength. Regions
forming the default network (Raichle et al., 2001) were based on Van
Dijk et al. (2010) and included the posterior cingulate cortex (pCC: 0,
−53, 26), medial prefrontal cortex (0, 54, −4), and left and right
inferior parietal lobule (−46, −48, 36 and 50, −62, 32). Regions
forming the fontoparietal control network were based on Vincent et
al. (2008) and included the anterior prefrontal cortex (aPFC:−36, 57,
3 and 36, 57, 3) and inferior parietal lobule (−44, −52, 54 and 48,
−50, 52). Regions forming the motor network were based on Biswal
et al. (1995) and included the left and right motor cortex (−42,−25,
63 and 42, −25, 63). All seed regions had a radius of 4 mm.

Finally, a measure of local functional coupling was calculated as
described in detail elsewhere (Sepulcre et al., 2010; see also Tomasi
and Volkow, 2010). Briefly, degree centrality is a network measure
that quantifies the number of edges (or links) that are connected to a
node in a graph (Rubinov and Sporns, 2010). Here brain voxels are the
nodes and positive correlations between voxels N0.25 are the links.
Data were down sampled to 4 mm isotropic voxels. Local degree
connectivity was calculated for each voxel by counting the number
of links to other voxels within the immediate neighborhood (within
a 12-mm radius). The output was a whole brain local degree
connectivity map for each subject. For the present paper we took
the z-transformed local degree connectivity map (with values ranging
from 0 to 1; Buckner et al., 2009) of 50 young healthy subjects as
published previously (Sepulcre et al., 2010) to create a binary mask of
regions with high local degree connectivity (zN0.75). The metric of
local functional couplingwas the unstandardized average local degree
connectivity of all voxels within this mask. A high value for this metric
means that the data show high local functional coupling.

We also computed for each subject a functional connectivity
map representing the default network by correlating the mean signal
time course from a spherical seed region within the posterior cingu-
late cortex (pCC; 4-mm radius; MNI coordinates 0, −53, 26; Van Dijk
et al., 2010) with the time courses of all acquired voxels using
Pearson's product moment correlation. Correlation maps were con-
verted to z-maps using Fisher's r-to-z transformation. Group maps
were computed by averaging the individual z(r) correlation maps.

Results

Estimates of head motion

We explored the distribution of headmotion across all 1088 usable
subjects by plotting the frequency histogram of Mean Motion (the
mean displacement of each brain volume as compared to the previous
volume). A few observations are notable (Fig. 1A). First, there is
substantial inter-subject variability. Second, a minority of subjects
displayed disproportionately high levels of Mean Motion. Although
this skewed distribution is expected from a distance measure it is
worth noting that 8.5% of the subjects were outliers and 2.8% were
extreme outliers when defined as Mean Motion greater than 2.0 and
2.5 standard deviations from the mean, respectively. Third, Mean
Motion was lower for females than for males, which can be seen as a
shift in their distributions (Mfemales=0.048±0.020, Mmales=0.054±
0.025, t(1086)=5.33, pb0.001). Comparing Mean Motion to the
other three motion estimates revealed that all were correlated.
Maximum Motion was the least stable metric with a moderate
correlation to Mean Motion (Fig. 1B; r=0.67, pb0.001). This was not
surprising because Maximum Motion is calculated based on a single
image volume displacement for each subject. Mean Motion and
Number of Movements were near proxies for one another (Fig. 1C;
r=0.96, pb0.001), and Mean Motion and Rotation were strongly
associated (Fig. 1D; r=0.84, pb0.001). Further analyses primarily
used Mean Motion.

Head motion has a non-linear effect on temporal signal-to-noise

Fig. 2 plots the strong inverse relation between Mean Motion and
tSNR, which suggests that subject motion introduces noise in the
measurement. The relation was better modeled by non-linear
regression (r=−0.61, pb0.001) than linear regression (r=−0.57,
pb0.001). Here and elsewhere we display the quadratic regression
term if it accounts for significant variance beyond the linear term. The
subjects were divided into 10 groups ranging from those who moved
least (Group 1) to those who moved most (Group 10). Mean Motion
displacement per group is plotted by the black circles in Fig. 2 that fall
along the non-linear curve fit.

Head motion is associated with decreased functional connectivity in
large-scale networks

The central question of this paper is whether head motion is
associatedwith differences in functional connectivity estimates. Mean
Motion was found to systematically affect all four tested functional
connectivity measures but not in the same direction. Analyses using
Rotation were statistically indistinguishable. Increasing Mean Motion
was associated with significantly decreased functional correlation
strength among regions within the default network (rlinear=−0.18,
pb0.001; Fig. 3A) and the frontoparietal control network (rlinear=
−0.16, pb0.001; Fig. 3B). The plots and amount of variance accounted
for by Mean Motion also revealed that head motion explains only a
fraction of the variance across subjects, but that fraction may be
critical and confound analyses.



Fig. 1. Head motion estimates across subjects. (A) The frequency distribution of Mean Motion across the full sample (n=1088). Mean Motion represents the mean absolute
displacement of each brain volume as compared to the previous volume. Black bars represent females; white bars represent males. The distribution of motion for female subjects is
shifted lower in relation to the male subjects. (B) The relation between Mean Motion and the Maximum Motion is illustrated. Each point represents a unique subject. The line plots
linear regression (r=0.67, pb0.001). (C) The relation between Mean Motion and the Number of Movements between adjacent volumes N0.1 mm (r=0.96, pb0.001). (D) The
relation between Mean Motion and Rotation angle (r=0.84, pb0.001).
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To illustrate the effects of head motion on functional connectivity,
we constructed contrast maps between groups that differed in Mean
Motion. Using a region in the posterior cingulate cortex as a seed we
computed the functional connectivity map representing the default
network for each subject. Contrasting Group 1 (10% of subjects that
moved the least, Mean Motion=0.027) with Group 10 (10% of
subjects that moved the most, Mean Motion=0.100) showed higher
Fig. 2. Head motion is associated with reduced temporal signal-to-noise ratio (tSNR).
The gray circles each represent a unique subject from a random sampling of 1000
subjects. There is a clear (expected) relation betweenMeanMotion and tSNR. The black
line and curve represent the best linear (r=−0.57, pb0.001) and non-linear fit (r=
−0.61, pb0.001) to the full sample of subjects. The black circles represent the mean
values for each of 10 subgroups of subjects that were divided based on Mean Motion.
Each black circle is from 100 subjects (10%) of the sample, so the leftmost circle is from
the stillest 10% of the sample and the rightmost circle is from the 10% of the sample with
the greatest headmotion. Bars around the circles represent standard errors of themean.
The last two subgroups (20% of the sample) moved considerably more than the other
eight subgroups, consistent with the skewed distribution apparent in Fig. 1.
functional connectivity in the low motion group throughout the
default network including medial prefrontal cortex, lateral temporal
cortex, and the inferior parietal lobule in the group that moved least
(Fig. 4 left). A moremoderate contrast between Groups 3 and 8 (Mean
Motion=0.036 and 0.059) also showed higher functional connectiv-
ity throughout the default network in the low motion group (Fig. 4
middle). Finally, contrasting Groups 5 and 6, with average motion
parameters that are numerically very close but significantly different
(Mean Motion=0.044 and 0.048), yielded difference maps that
resemble the canonical default network (Fig. 4 right). Thus, systematic
but slight differences in head motion can produce functional
connectivity differences.

Head motion increases local functional coupling

Head motion did not have the same effect on all functional
connectivity measures. Increasing Mean Motion was associated with
increased functional connectivity between the left and right motor
regions (rlinear=0.07, pb0.05; rnon-linear=0.11, pb0.005) (Fig. 3C). In
addition, increasing Mean Motion was associated with higher local
functional coupling, i.e. connectivity to nearby regions (rlinear=0.09,
pb0.005; rnon-linear=0.15, pb0.001; Fig. 3D). Thus, head motion can
have systematically different effects on functional connectivity
depending on the network and measure.

Between-subject head motion differences are stable

The considerable dispersion among headmotion estimates in Fig. 1
raises the question of whether head motion varies from run to run or
reflects a trait-like stable property of subjects. To explore this
question, we examined the reliability of Mean Motion estimates

image of Fig.�2


Fig. 3. Headmotion is significantly correlatedwith functional connectivity but in opposing directions for distinctmeasures. Plot format parallels Fig. 2. (A) Functional correlation among regions
within the default network shows a significant linear (r=−0.18, pb0.001) decreasewith increasingMeanMotion. (B) Functional correlation among regions in the frontoparietal network also
shows a significant linear decreasewith increasingMeanMotion (r=−0.16, pb0.001). Non-linear regressionswere not different from the linearfit. (C) Functional correlation between left and
right motor regions shows a significant linear (r=0.07, p=0.026) and non-linear (r=0.11, p=0.003) increase with increasing Mean Motion. (D) Local functional coupling, a measure of
functional connectivity tonearbyvoxels, also showsa significant linear (r=0.09,p=0.005) andnon-linear (r=0.15,pb0.001) increasewith increasingMeanMotion. Themost extrememovers
appear to show a decrease. The possibility of non-linear effects of head motion will be important to analysis strategies.
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across independent scanning sessions in 42 subjects. Mean Motion
was significantly correlated between the two sessions (r=0.57,
pb0.001 in the total sample; r=0.66, pb0.001 when excluding four
outliers) (Fig. 5), indicating that certain aspects of head motion may
behave as a trait and present a potential confound when exploring
individual differences within a population.
Fig. 4. Maps reveal functional connectivity network differences based solely on head motio
motion might confound an analysis. Each map represents the functional connectivity differen
greater motion. Eachmap displays the surface projection for the difference for a seed region p
most extreme groups (Group 1 is the stillest 10% of the subjects and Group 10 is the livelies
default network including medial prefrontal cortex, lateral temporal cortex, and the inferior
and 8. The rightmost image shows the contrast between Groups 5 and 6 that have MeanMoti
range of motion, differences in head motion yield difference maps that could easily be mist
Discussion

The present study examined the influence of head motion on
functional connectivity MRI. The primary result is that head motion
has systematic effects on functional connectivity estimates that could
easily be misinterpreted as neuronal effects. High levels of head
n. Group functional connectivity difference maps are presented to illustrate how head
ce for one group of 100 subjects with lesser motion as compared to a second group with
laced in the posterior cingulate. The leftmost image shows the contrast between the two
t 10% of the subjects). Functional connectivity differences are observed throughout the
parietal lobule. The middle image shows a more moderate contrast between Groups 3
on estimates of 0.044 and 0.048 mm— an extremely subtle difference. Even in this tight
aken for neuronal effects.

image of Fig.�3
image of Fig.�4


Fig. 5. Between-subject differences in head motion are stable. Mean Motion estimates
are plotted for two separate scanning sessions conducted on separate days. Each data
point represents a unique person. The correlation is significant (r=0.57, pb0.001) and
increases further if the four outliers (denoted by diamonds) are removed (r=0.66).
Analyses of functional connectivity will need to consider the possibility that certain
aspects of head motion behave as a trait and present a potential confound when
exploring individual differences.
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motionwere associatedwith reduced functional connectivity in large-
scale distributed networks (e.g., the default network and the
frontoparietal control network; Figs. 3A and B) and increased local
functional connectivity (Figs. 3C and D). Small differences in motion
were sufficient to produce specific effects in seed-based functional
connectivity maps (Fig. 4). Head motion was stable within individual
subjects from one acquisition session to the next (Fig. 5) raising the
possibility that motion can confound studies exploring individual
differences within the same population.

Implications

A clear implication of the present results is that it will be necessary
to carefully consider the effects of head motion on functional
connectivity MRI studies that examine individual differences or that
contrast subject groups. A cursory literature review indicates that
there aremore than 100 studies that make such comparisons, many of
which report between-group decreases in functional connectivity in
distributed networks of brain regions. As an example of such a study,
we examine one from our own laboratory — Andrews-Hanna et al.
(2007). While that study did not examine functional correlations
acquired at rest, it did contrast functional connectivity between
subject groups during a continuous task state (a rapid event-related
paradigm) that is presumably sensitive to the motion confounds
reported here. It is thus a useful case study.

The primary finding of Andrews-Hanna et al. (2007) was robust
reductions in functional connectivity across multiple large-scale
brain networks (the default and dorsal attention networks) in healthy
older adults relative to younger adults. The two groups differed in
motion as calculated in the original study using a root-mean-squared
estimate of motion that cumulated over the entire functional runs
(young=0.19 mm, old=0.28 mm; pb0.001). Examining the corre-
lation between the posterior cingulate and the medial prefrontal
cortex (one of the region pairs central to the paper) further reveals
that the functional coupling estimate is influenced by motion.
Subjects who moved more showed reduced functional connectivity
across these two nodes of the default network (r=−0.47, pb0.001).
When motion is regressed from the estimate of functional connectiv-
ity, the relation between age and functional coupling drops from
r=0.71 to r=0.54 (remaining significant, pb0.001). Thus, there is an
effect of the motion estimate but it does not account for the major
portion of the association.

However, it is still difficult to assess the full impact of motion. That
study employed large non-isotropic voxels and any single motion
metric is certainly imperfect. Residual components of motion may not
be captured. Also, the well-intended control analysis in the original
report focused on local correlations within the visual system (which
did not differ between groups). The assumption was that artifacts and
motion would globally affect functional coupling between distributed
regions. As the results in Fig. 3 reveal, head motion has different
effects on different functional connectivity measures. Certain corre-
lations between the hemispheres (Fig. 3C) and among local regions
(Fig. 3D) increase with head motion. Thus, the original control is not
sufficient in light of the present observation that motion has dif-
ferential effects depending of the functional connectivity measure
examined.We raise these points tomake clear the complex challenges
motion may have on between-group comparisons.

Beyond group comparisons, the present results also suggest that
explorations of individual differences within the same population
may be systematically affected by motion confounds. Fig. 5 illustrates
that subjects who tend to move on one occasion tend to move on
another occasion. Thus, head motion behaves like a trait and can be
expected to influence individual subject estimates in ways that may
yield systematic differences. This possibility should be carefully
considered in genetic and heritability analyses.

We can place some boundary conditions on what to expect. While
motion significantly and systematically affects functional connectivity
estimates, the large variability of functional connectivity measures
within motion groups, as shown in Fig. 3, reveals that the major
portion of variance among people is not related to our present motion
estimates. Recasting the data illustrated in Fig. 5 further clarifies this
point. Head motion estimates are reliable (r=0.57 in our present
sample). The implication is that some portion (or all) of the reliable
differences in functional connectivity measures might be attributable
to motion. To explore this, we computed the test–retest reliability of
four functional connectivity measures for the 42 subjects plotted in
Fig. 5. The functional connectivity measures showed moderate
reliability (r=0.61, 0.66, 0.43 and 0.44 for the default network,
frontoparietal control, motor network, and local functional coupling,
respectively). When head motion was regressed from the estimates,
the test–retest reliability remained at about the same level (r=0.68,
0.62, 0.43, and 0.46, respectively). Thus, headmotion does not seem to
account for the major portion of stable between-subject variation in
functional connectivity.

Nonetheless, it is important not to underestimate the challenge of
head motion. Head motion is a particularly insidious confound. It is
insidious because it biases between-group studies often in the
direction of the hypothesized difference. Given that different popula-
tions have different data artifacts and levels of motion, and further
that head motion does not affect all functional connectivity estimates
in a similar fashion, it will be important to address the confound of
motion on a case by case basis. That is, even though there is
considerable variation that is not due to head motion, in any given
instance, a between-group difference could be entirely due to motion.
Paradoxically, large data samples may be particularly vulnerable to
this kind of confound where small, systematic differences in motion
could become the dominant difference as other sources of variation
are matched between groups. The rightmost panel of Fig. 4 illustrates
this point. The panel compares two large samples (each n=100) that
were matched for age and sex but systematically differed in a small
degree of motion (0.044 versus 0.048 mm Mean Motion displace-
ment). A between-group effect on functional connectivity of the
default network is evident that is most likely entirely driven by head
motion. This difference in another context could easily be mistaken
for a true neuronal effect.

Potential ways to address head motion

Confronting motion artifacts is not a new challenge for the field
and several potential causes of motion have been identified. Gross
motion may arise from shifts in head position during the scan or from

image of Fig.�5
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swallowing and jaw clenching; cardiac cycles and respiration are also
known to contribute to motion artifacts (Birn et al., 2008a; Enzmann
and Pelc, 1992; Glover et al., 2000; Huettel et al., 2004). Findings from
task-based fMRI studies suggest that motion may be more strongly
related to subject groups than to properties of the task itself (Seto et
al., 2001), which is consistent with our finding that head motion
behaves – to some degree – as a subject-specific trait. We suspect that
themajor portion of the headmotion affecting functional connectivity
in our analyses is due to gross head movement in space and,
specifically, head motion that persists after within-subject motion
correction and regression of non-specific signals from white-matter
and CSF. The opposing effects of decreased and increased functional
connectivity may be caused by spatial blurring due to motion. Spatial
blurring will increase local correlation of the signal while decreasing
the strength of long-range coupling to anatomically-specific regions.
One exception might be distant coupling between bilateral brain
regions, such as the motor cortex, that could be exposed to symmetric
movements of the homologous region pairs.

Multiple strategies have the potential to address the challenge of
head motion in studies using functional connectivity that are as
simple as better procedures for head immobilization and careful
instruction (and reminding) about the importance of staying still. One
interesting approach by Yang et al. (2005) involved real time feedback
to indicate when movement exceeded a specified threshold. Head
immobilization and instruction will only go so far to mitigate the
challenge as cardiac cycles, respiration, and involuntary movements
such as swallowing will persist under the best circumstances. Other
strategies to addressmotionmight include approaches that (1) improve
traditional nuisance regression techniques (for a recent example see
Jo et al., 2010), (2) prospectively correct for motion during data
acquisition (Thesen et al., 2000; Ward et al., 2000), (3) post-hoc
eliminate images or epochs where motion is evident (Power et al.,
2011), (4) regress physiological signals associated with cardiac and
respiratory motion either directly measured (e.g. Birn et al., 2008b;
Chang et al., 2009) or as estimated from the data itself (e.g. Beall and
Lowe, 2007, 2010), (5) regress motion estimates from between-subject
analyses, and (6) match the level of motion between subject groups.

Conclusions

Head motion significantly affects measures of functional connec-
tivity MRI even within the range of motion exhibited by typical,
healthy young adults. The effects are dependent on the specific
measure and include decreased functional coupling for distributed
networks and increased functional coupling for local networks. Since
motion was found to be a stable property within subjects – behaving
as a trait – studies of genetic associations, heritability, and relations
to behavior and personality will all need to consider the influence
of head motion. Analyses that contrast groups that differ in their
tendency to move will be particularly vulnerable to the confounding
effects of motion, especially when the group more likely to move
shows reductions in distributed and increases in local functional
coupling (e.g., children and older adults). Application of strategies to
reduce motion and sophisticated methods to regress physiological
signals associated with cardiac and respiratory motion may prove
beneficial for studies contrasting groups that systematically differ in
terms of head motion during the scan.

Acknowledgments

We thank the Harvard Center for Brain Science Neuroimaging
Core, the Athinoula A. Martinos Center for imaging support, and the
Harvard Neuroinformatics Research Group (Gabriele Fariello, Timothy
O'Keefe, and Victor Petrov). The data analyzed were collected as part
of the Genomics Superstruct Project. We thank Marisa Hollinshead,
Elizabeth Hemphill, Leah Bakst, Angela Castellanos, and Sara Ruben-
stein for assistance in collecting the data. Avram Holmes and Jorge
Sepulcre assisted in constructing the functional connectivity mea-
sures, and Avi Snyder provided valuable discussion. This work was
supported by NIA Grants (AG021910, P41RR14074, K08MH067966),
the Howard Hughes Medical Institute, and the Simons Foundation. Dr.
Sabuncu receives support from a KL2 Medical Research Investigator
Training (MeRIT) grant awarded via Harvard Catalyst, The Harvard
Clinical and Translational Science Center (NIH grant 1KL2RR025757
and financial contributions from Harvard University and its affiliated
academic health care centers).
References

Andrews-Hanna, J.R., Snyder, A.Z., Vincent, J.L., Lustig, C., Head, D., Raichle, M.E.,
Buckner, R.L., 2007. Disruption of large-scale brain systems in advanced aging.
Neuron 56, 924–935.

Beall, E.B., Lowe, M.J., 2007. Isolating physiologic noise sources with independently
determined spatial measures. NeuroImage 37, 1286–1300.

Beall, E.B., Lowe, M.J., 2010. The non-separability of physiologic noise in functional
connectivity MRI with spatial ICA at 3T. J. Neurosci. Methods 191, 263–276.

Birn, R.M., Murphy, K., Bandettini, P.A., 2008a. The effect of respiration variations on
independent component analysis results of resting state functional connectivity.
Hum. Brain Mapp. 29, 740–750.

Birn, R.M., Smith, M.A., Jones, T.B., Bandettini, P.A., 2008b. The respiration response
function: the temporal dynamics of fMRI signal fluctuations related to changes in
respiration. NeuroImage 40, 644–654.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34,
537–541.

Buckner, R.L., 2010. Human functional connectivity: new tools, unresolved questions.
Proc. Natl. Acad. Sci. U. S. A. 107, 10769–10770.

Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-
Hanna, J.R., Sperling, R.A., Johnson, K.A., 2009. Cortical hubs revealed by intrinsic
functional connectivity: mapping, assessment of stability, and relation to
Alzheimer's disease. J. Neurosci. 29, 1860–1873.

Chang, C., Cunningham, J.P., Glover, G.H., 2009. Influence of heart rate on the BOLD
signal: the cardiac response function. NeuroImage 44, 857–869.

Cole, D.M., Smith, S.M., Beckmann, C.F., 2010. Advances and pitfalls in the analysis and
interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4, 8.

Enzmann, D.R., Pelc, N.J., 1992. Brain motion: measurement with phase-contrast MR
imaging. Radiology 185, 347–353.

Evans, A.C., Collins, D.L., MIlls, S.R., Brown, E.D., Kelly, R.L., Peters, T.M., 1993. 3D
statistical neuroanatomical models from 305 MRI volumes. Proceedings of IEEE-
Nuclear Science Symposium and Medical Imaging Conference, pp. 1813–1817.

Fornito, A., Bullmore, E.T., 2010. What can spontaneous fluctuations of the blood
oxygenation-level-dependent signal tell us about psychiatric disorders? Curr. Opin.
Psychiatry 23, 239–249.

Fornito, A., Zalesky, A., Bassett, D.S., Meunier, D., Ellison-Wright, I., Yucel, M., Wood, S.J.,
Shaw, K., O'Connor, J., Nertney, D., Mowry, B.J., Pantelis, C., Bullmore, E.T., 2011.
Genetic influences on cost-efficient organization of human cortical functional
networks. J. Neurosci. 31, 3261–3270.

Fox, M.D., Greicius, M., 2010. Clinical applications of resting state functional
connectivity. Front. Syst. Neurosci. 4, 19.

Glahn, D.C., Winkler, A.M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M.A.,
Curran, J.C., Olvera, R.L., Laird, A.R., Smith, S.M., Beckmann, C.F., Fox, P.T., Blangero,
J., 2010. Genetic control over the resting brain. Proc. Natl. Acad. Sci. U. S. A. 107,
1223–1228.

Glover, G.H., Li, T.Q., Ress, D., 2000. Image-based method for retrospective correction
of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44,
162–167.

Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.,
2009. Predicting human resting-state functional connectivity from structural
connectivity. Proc. Natl. Acad. Sci. U. S. A. 106, 2035–2040.

Huettel, S.A., Song, A.W., McCarthy, G., 2004. Functional Magnetic Resonance Imaging,
First Edition. Sinauer Associates, Sunderland, MA.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the
robust and accurate linear registration and motion correction of brain images.
NeuroImage 17, 825–841.

Jo, H.J., Saad, Z.S., Simmons, W.K., Milbury, L.A., Cox, R.W., 2010. Mapping sources of
correlation in resting state FMRI, with artifact detection and removal. NeuroImage
52, 571–582.

Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P.,
Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., et al., 1992. Dynamic magnetic
resonance imaging of human brain activity during primary sensory stimulation.
Proc. Natl. Acad. Sci. U. S. A. 89, 5675–5679.

Meindl, T., Teipel, S., Elmouden, R., Mueller, S., Koch, W., Dietrich, O., Coates, U., Reiser,
M., Glaser, C., 2010. Test–retest reproducibility of the default-mode network in
healthy individuals. Hum. Brain Mapp. 31, 237–246.

Ogawa, S., Tank, D.W., Menon, R.S., Ellermann, J.M., Kim, S.G., Merkle, H., Ugurbil, K.,
1992. Intrinsic signal changes accompanying sensory stimulation: functional brain
mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U. S. A. 89,
5951–5955.



438 K.R.A. Van Dijk et al. / NeuroImage 59 (2012) 431–438
Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2011. Spurious but
systematic correlations in resting state functional connectivity MRI arise from head
motion. Soc. Neurosci. Abstr. 290.03.

Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.,
2001. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 676–682.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses
and interpretations. NeuroImage 52, 1059–1069.

Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B.T., Buckner, R.L., 2010. The
organization of local and distant functional connectivity in the human brain. PLoS
Comput. Biol. 6, e1000808.

Seto, E., Sela, G., McIlroy, W.E., Black, S.E., Staines, W.R., Bronskill, M.J., McIntosh, A.R.,
Graham, S.J., 2001. Quantifying head motion associated with motor tasks used in
fMRI. NeuroImage 14, 284–297.

Shehzad, Z., Kelly, A.M.C., Reiss, P.T., Gee, D.G., Gotimer, K., Uddin, L.Q., Lee, S.H.,
Margulies, D.S., Roy, A.K., Biswal, B.B., Petkova, E., Castellanos, F.X., Milham, M.P.,
2009. The resting brain: unconstrained yet reliable. Cereb. Cortex 19, 2209–2229.

Thesen, S., Heid, O., Mueller, E., Schad, L.R., 2000. Prospective acquisition correction for
head motion with image-based tracking for real-time fMRI. Magn. Reson. Med. 44,
457–465.

Tomasi, D., Volkow, N.D., 2010. Functional connectivity density mapping. Proc. Natl.
Acad. Sci. U. S. A. 107, 9885–9890.

Van der Kouwe, A.J., Benner, T., Fischl, B., Schmitt, F., Salat, D.H., Harder, M., Sorensen,
A.G., Dale, A.M., 2005. On-line automatic slice positioning for brain MR imaging.
NeuroImage 27, 222–230.

Van der Kouwe, A.J., Benner, T., Salat, D.H., Fischl, B., 2008. Brain morphometry with
multiecho MPRAGE. NeuroImage 40, 559–569.
Van Dijk, K.R.A., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L.,
2010. Intrinsic functional connectivity as a tool for human connectomics: theory,
properties, and optimization. J. Neurophysiol. 103, 297–321.

Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., Buckner,
R.L., 2006. Coherent spontaneous activity identifies a hippocampal–parietal
memory network. J. Neurophysiol. 96, 3517–3531.

Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., Buckner, R.L., 2008. Evidence for a
frontoparietal control system revealed by intrinsic functional connectivity.
J. Neurophysiol. 100, 3328–3342.

Vogel, A.C., Power, J.D., Petersen, S.E., Schlaggar, B.L., 2010. Development of the brain's
functional network architecture. Neuropsychol. Rev. 20, 362–375.

Ward, H.A., Riederer, S.J., Grimm, R.C., Ehman, R.L., Felmlee, J.P., Jack Jr., C.R., 2000.
Prospective multiaxial motion correction for fMRI. Magn. Reson. Med. 43,
459–469.

Yang, S., Ross, T.J., Zhang, Y., Stein, E.A., Yang, Y., 2005. Head motion suppression using
real-time feedback of motion information and its effects on task performance in
fMRI. NeuroImage 27, 153–162.

Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M.,
Roffman, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.,
2011. The organization of the human cerebral cortex estimated by functional
connectivity. J. Neurophysiol. doi:10.1152/jn.0038.2011.

Zar, J.H., 1996. Biostatistical Analysis. Prentice Hall, Upper Saddle River NJ.
Zhang, D., Raichle,M.E., 2010. Disease and the brain's dark energy. Nat. Rev. Neurol. 6, 15–28.
Zuo, X.N., Di Martino, A., Kelly, C., Shehzad, Z.E., Gee, D.G., Klein, D.F., Castellanos, F.X.,

Biswal, B.B., Milham, M.P., 2010. The oscillating brain: complex and reliable.
NeuroImage 49, 1432–1445.


	The influence of head motion on intrinsic functional connectivity MRI
	Introduction
	Methods
	Overview
	Subjects
	MRI data acquisition
	Functional MRI data preprocessing
	Measurement of head motion
	Measurement of temporal signal-to-noise ratio (tSNR)
	Functional connectivity analysis

	Results
	Estimates of head motion
	Head motion has a non-linear effect on temporal signal-to-noise
	Head motion is associated with decreased functional connectivity in large-scale networks
	Head motion increases local functional coupling
	Between-subject head motion differences are stable

	Discussion
	Implications
	Potential ways to address head motion

	Conclusions
	Acknowledgments
	References


