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Abstract—We propose a non-parametric, probabilistic . INTRODUCTION
model for the automatic segmentation of medical images,
given a training set of images and corresponding label  This paper investigates a probabilistic modeling
maps. The resulting inference algorithms rely on pairwise framework to develop automatic segmentation tools that
registrations between the test image and individual train- delineate anatomical regions of interest in a novel medi-
ing images. The training labels are then transferred to the 5| jmage scan. The objective is to learn a segmentation
test image and fused to compute the final segmentation protocol from a collection of training images that have

of the test subject. Such label fusion methods have beenb v labeled b ¢ Thi tocol is th
shown to yield accurate segmentation, since the use of mul- een manually labeled Dy an expert. 1his protocol s then

tiple registrations captures greater inter-subject anatoni- €Mmployed by the algorithm to automatically segment a
cal variability and improves robustness against occasiona NeW (test) image. Such supervised segmentation tools are
registration failures. To the best of our knowledge, this commonly used in many medical imaging applications,
manuscript presents the first comprehensive probabilistic including surgical planning [27] and the study of disease
framework that rigorously motivates label fusion as a seg- progression, aging or healthy development [23], [50],
mentation gpproach.The p_roposed_framework aI_Iows usto [74]. As an application domain, this paper focuses on
compare dlfferent_label fusion aIgonthm; theoretlca}lly and Magnetic Resonance (MR) imaging of the brain. How-
practically. In particular, recent label fusion or multi-a tlas . . .
ever, most of the ideas we discuss here can be easily

segmentation algorithms are interpreted as special case$ o .. L .
our framework. We conduct two sets of experiments to val- extended to other modalities and applications, particu-

idate the proposed methods. In the first set of experiments, larly with the recent development of fast algorithms for
we use 39 brain MRI scans — with manually segmented pairwise registration in other imaging domains [71], [73].
white matter, cerebral cortex, ventricles and subcortical We will thus consider the problem of segmenting the
structures — to compare different label fusion algorithms MRI volume scan of a novel subject, based on other

and the widely-used FreeSurfer whole-brain segmentation sybjects’ MRI scans that have been delineated by an
tool. Our results indicate that the proposed framework expert.

yields more accurate segmentation than FreeSurfer and Earlv MR seamentation alaorithms mainlv dealt with
previous label fusion algorithms. In a second experiment, y 9 9 y

we use brain MRI scans of 282 subjects to demonstrate .the prpblem _Of tissue qlassifigatipn, where local image
that the proposed segmentation tool is sufficiently sensite  intensity profiles contain a significant amount of the
to robustly detect hippocampal volume changes in a study relevant information [10], [15], [41], [68]. A detailed
of aging and Alzheimer’s Disease. parcellation of the brain anatomy into structurally or
functionally defined regions of interest (ROI) typically
requires supervision, commonly in the form of labeled
training data, since the local appearance of most such
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and test image. The resulting warp can then be usewhploying local image intensities for locally adapting
to map the training labels onto the coordinates of thke weights [6], [32] and using estimates of classifier
test image [16], [26], [31], [43]. The quality of suchperformance in determining a weight for each label and
a registration-based approach is limited by the accuracgining subject [53], [67]. To the best of our knowledge,
of the pairwise registration procedure and the anatomidawever, none of the label fusion segmentation methods
similarity between the labeled and test subjects. are derived within a probabilistic framework that explic-
To reduce the bias due to the labeled subject anditly models the relationship between the training data and
model anatomical variability, multiple subjects can beest subject.
employed in the training phase. A common method is Label fusion methods offer two main advantages: (1)
to use a parametric model to summarize the trainigross-subject anatomical variability is better captured
data in a common coordinate system [8], [24], [29than in a single atlas, which can be viewed as a paramet-
[36], [48], [62], [63], [64], [72]. In this approach theric model that typically uses single mode distributions
training data are co-registered to compute probabilifg.g., Gaussian) to encode anatomical appearance, and
maps that encode the prior probability of observing @) multiple registrations improve robustness against
particular label at each point in the common (atlag)ccasional registration failures. The main drawback is
coordinates. The test subject is then normalized to ttiee computational burden introduced by the multiple reg-
atlas coordinates through a pairwise registration withistrations and information fusion from the entire training
template image that represents the average subject. Tata. To alleviate this problem, various heuristics for
registration can be completed as a pre-processing stegecting only a subset of the training subjects for use
or can be unified with the segmentation procedure, @sregistration and label fusion have been proposed [1].
in [8], [18], [48], [72]. Once the test subject is spatiallyn the atlas construction literature, there has also been
normalized, one can use a variety of models of shapxent work on estimating multiple templates from a
and appearance to devise a segmentation algorithm. T8at of images [2], [11], [54], [66]. We believe that this
ditionally, generative models have been popular, wheapproach can also be used to reduce the computational
simple conditionally independent Gaussian models arest of label fusion by summarizing the training data.
used for appearance [24], [48]. More sophisticated shayde leave this issue for future work.
models that encourage certain topological propertiesThe central contribution of this paper is to propose
have also been proposed to improve segmentation quatd investigate a generative model that leads to la-
ity [47], [62], [70]. bel fusion style image segmentation algorithms. Within
Rather than relying on a single atlas coordinate sythe proposed framework, we derive several methods
tem, an alternative strategy is to register each trainitigat combine transferred training labels into a single
subject to the test subjeceparately Similar to the segmentation estimate. Using a dataset of 39 brain
registration-based segmentation approach, these pairi#R| scans and corresponding label maps obtained from
warps are then used to transfer the training labels irdo expert, we experimentally compare these segmenta-
the coordinate system of the test subject. Given thets@n algorithms. Additionally, we compare against other
transferred labels, segmentation has been commobBnchmarks including FreeSurfer's whole brain segmen-
formulated as a label fusion problem [30], [42], [51]tation tool, which has been widely used in a large
[52], [53], [58]. Intriguingly, Majority Voting, which number of studies [69], and STAPLE [67], a method
is probably the simplest label fusion method, has be#mat combines multiple segmentation estimates based on
demonstrated to yield powerful segmentation tools [14, probabilistic performance model. Our results suggest
[30], [51], [52]. Empirical results in these studies sughat the proposed framework yields accurate and robust
gest that errors in the manual labeling and registratigegmentation tools that can be employed on large multi-
procedures are reduced during label fusion, resultisgbject datasets. In a second experiment, we used one
in accurate segmentation. Recent work has shown tlodtthe proposed segmentation algorithms to compute
weighted averaging can be used to improve segmentgpocampal volumes in MRI scans of 282 subjects. A
tion quality [6], [32], [53], [58]. The underlying intu- comparison of these measurements across clinical groups
ition is that training subjects more similar to the teshdicate that the proposed algorithm is sufficiently sen-
subject should carry more weight during label fusiorsitive to robustly detect hippocampal volume differences
The practical advantages of various strategies basedamsociated with aging and early Alzheimer’s Disease.
this idea have recently been demonstrated [6]. TheselThe generative model described in this paper is an
strategies include using the whole image to determie&tension of the preliminary ideas we presented in recent
a single, global weight for each training subject [6fconference papers [55], [57]. The present paper offers
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detailed derivations, discussions and experiments that ‘{Ln}’ [ﬂ} ‘{In}’
were not contained in those papers. The remainder of

the paper is organized as follows. Sections Il and llI
present the generative model and its instantiation, respec
tively. In Section IV, we develop several label fusion

style segmentation algorithms based on the proposec 4 <
generative model. Section V presents empirical results. | ( P
In Section VI, we discuss the contributions of the paper x Q] Q| @

along with the drawbacks of the proposed algorithms,
while pointing to future research directions. Section VII

concludes with a summary. Fig. 1. Graphical model that depicts the relationship betwthe

variables. Squares indicate non-random parametersegiinticate
Il. THE GENERATIVE MODEL random variables. Replications are illustrated with gateounding
L(z) and I(x)). The |?| in the corner of the plate indicates the
In this section, we present the probabilistic modehriables inside are replicated that many times (i.e., doceeach

that forms the core of this paper. We Uffeén} to Vvoxel), and thus are conditionally independent. Shadeihigs are

denoteN training images with corresponding label map%bserVEd'
{L,}, n =1,...,N. We assume the label maps take

discrete values from to £ (including a “background”
or “unknown” label) at each spatial location. Whiledistribution over the entire training data, and each new
the training images are defined on a discrete grid, w@mple is associated with a single training sample, the
treat them as spatially continuous functions B by index of which is unknown and thus is marginalized
assuming a suitable interpolator. L& c R3 be a over. In dealing with images, we may want to allow
finite grid where the test subject is defined. We denoli@r this membership index to vary spatially. Therefore
®,, : Q — R? to be the spatial mapping (warp) from thave introduceM : Q — {1,... N} to denote the latent
test subject coordinates to the coordinates of ik random field that specifies for each voxel in the test
training subject. For simplicity, we assume th@b,} imagel, the (membership) index of the training image
have been pre-computed using a pairwise registratibnit was generated from.
procedure, such as the one described in Appendix A.In the following, we make the assumption that
This assumption allows us to short-hafdl,, ®,} and the image intensity valued(z) and labelsL(z) at
{Ly,®,} with I,, and L,,, respectively, where we dropeach voxel are conditionally independent (as illus-
~ to indicate that we know the transformatidn, that trated with a plate around these variables in Fig-
maps the training data into the coordinates of the tagte 1), given the random field/, and the training data
subject. {Ln,I,}. Furthermore, we assume that each voxel is
The goal of segmentation is to estimate the label mgenerated from a single training subject indexed with
L associated with the test imadeThis can be achieved M (z), i.e., p(L(x)|M;{L,}) = p(L(z)|M(x); L))
via Maximum-A-Posteriori (MAP) estimation: and p(I(z)|M;{L,}) = p(I(x)|M(x); ), which
. - we will short-hand with pys)(L(z); Lysy) and
L= argILnaXp(L|I; {Ln: Lo, n}) Py (@) Ing(ay)s respectively.( \)Ne can thlgs) construct
= argmax p(L, I; {Ln, I,}), 1) the conditional probability of generating the test image
L and label map:

wherep(L, I;{L,, I,}) denotes the joint probability of
thelz label mapL and_lmage[ given the t_ralnmg data. p (L, I|M; {Ln, T,})
nstead of wusing a parametric model for
p(L,I;{L.,I,}), we employ a non-parametric = | [ »(L(2),1 ()M (x);{Ln,1.}) 2)
estimator, which is an explicit function of the entire zeQ
training data, not a statistical summary of it, as shown _ . .
in Figure 1. The model assumes that the test subject l_!)pM(m) <L (z) ’LM(I)>pM($) (I (x)’IM(m)>'
is generated from one or more training subjects, the (3)
index or indices of which are unknown. This modeling
strategy is parallel to Parzen window density estimators,
where the density estimate can be viewed as a mixtureGiven a prior onM, we can view the imagd and
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label mapL as generated from a mixture model: For 0 — oo, Equation (6) reduces to an improper
distribution p,,(I(z); I,,) < C, whereC is a constant.
p(L, I;{Ly, I,}) = ZP(M)p(L’HM? {Ln,1n}),  As we discuss in Section IV-B, this simple model leads
M 4) to the Majority Voting strategy in label fusion, whereas
for a finite o2, Equation (6) yields a weighted averaging
where ) ,, denotes the marginalization over the urstrategy.
known random fieldM. Substituting Equation (3) into

Equation (4) yields the final cost function: B. Label Prior
- In this work, we investigate two representations to
L= M L(z);L : -
argznax%:p( )gpM(m) (L @)s L) define the label prior term,, (L(x); L,,). One representa-

o (I (@)1 ) (5) tion uses the logarithm of odds (LogOdds) model based
PM () IM(@)) - on the signed distance transform [49]. Lie denote the
The conditional independence assumption between gigned distance transform of labein training subject
label map and image may seem simplistic at first. Yet (in the native coordinates), which is assumed to be
conditional independence does not imply independeriesitive inside the structure of interest. We define the
and the relationship betweeh and I is given by label prior as:
marginalizing over the unknowi/ as in Equation (4).
Therefore, our model implicitly includes complex depen-pn(L(x) =lLn) =
dencies between labels and intensity values. For instar\}vqﬂtlae
p(I|L), a term commonly modeled explicitly in the
segmentation literature can be expressed as:

I (#Bh (@),

rep > 0 is the slope constantZ, ,(z) =
Zle exp(pD.,(®,(z))) is the partition function, and
is the total number of labels including the background

p(I|L;{Ly, I,}) label. The priorp,(L(xz) = [;L,) encodes the condi-
_ ) ) tional probability of observing labélat voxelz € ) of
N %:p(MM’ {Zn, 1) p (1|1, Mi{Ln, In}) the test image, given that it was generated fromitka
training image.
- ZP(M|L; {La}) p (IIM;{I0}) - The second representation, commonly used in the lit-
M

erature, employs the probability vector imagelgf(x):
Thus, given a model instantiation, the conditional inteeach voxel is a lengtlf- binary vector with thel'th
sity distribution of a particular label at a location of inte entry equal to 1 ifL,(z) = 1 and 0 otherwise. To
est can be estimated by examining the training subjedisfine the label priop,,(-; L, ), the transformatior®,, is
that exhibit that label in the proximity of the location ofapplied to the probability vector image &f,(z). In this
interest. This is exactly what atlas-based segmentatiethod, non-grid locations need to be interpolated using
algorithms do, which underscores the similarity betweensuitable method (e.g., trilinear or nearest neighbot) tha
the proposed probabilistic model and parametric mode&lasures positive and normalized probability values. In
used in the literature. But unlike atlas-based methogeneral, it is well known that trilinear interpolation yds
that use a parametric model f@(I|L), the proposed better segmentation results than nearest neighbor inter-
framework explicitly employs the entire training data sepolation [51], [55]. The LogOdds model of Equation (7)
has the advantage of yielding nonzero probabilities ev-
1. M ODEL INSTANTIATION erywhere, which makes the use of the logarithm of the
This section presents the specific instantiations of tRéOba.b”'ty numerically more stgble. AS dlscu'ssed n our
. ﬁxperlments presented in Section V-A, we find that the

to derive segmentation algorithms. LogOdds model produces more accurate results.

C. Membership Prior

A. Image Likelihood The latent random field/ : Q — {1,..., N} encodes
We adopt a Gaussian distribution with a stationatye local association between the test image and training
varianceo? as the image likelihood term: data. We employ a Markov Random Field (MRF) prior

pu(I(2): 1) on M:

1 1 1 2 — [ .
T Vare? [_P (1@ = L (@0 () ] ® D=7 [lew 5%16(1\4( ). M) | . (@)
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where 3 > 0 is a scalar paramete\, is a spatial reduces to

neighborhood of voxel:, Zz is the partition function N

that only depends o, andd is the Kronecker delta. ﬁ(x) = argmax an(L(ac) =1; Lp)pa(I(2); I,).
This particular type of MRF is often referred to as the le{l,..LY 5

Potts model. In our implementatiody; includes the (10)

immediate six neighbors of each voxel. Similar modelgy;g optimization problem can be solved by simply
have been used in the segmentation literature [64], [7%]3mparing£ numbers at each voxel: the fused label
mainly as priors on label maps to encourage the spaiileach voxel is computed via a local weighted (fuzzy)
relationships of labels observed in the training dat@oting strategy. The local image likelihood terms serve
In contrast, we use the MRF prior to (indirectly) pooks weights and the label prior values serve as votes.
local intensity information from within a neighborhoodrherefore’ at each voxel, training images that are more
in determining the association between the test subjggilar to the test image at the voxafter registration
and the training data. Here we adopt a simple form gfe weighted more. Interestingly, a similar approach
the MRF that does not include singleton and/or spatialysg recently proposed in the context of CT cardiac
varying terms. This is unlike the common usage Gfegmentation by Isgum et al. [32] where the transferred
MRFs in the segmentation literature where the label pri%lining labels are fused in a weighted fashion. The
typically varies spatially. heuristic weights proposed in that paper have a different
The parametep influences the average size of th@orm however and are spatially smoothed with a Gaus-
local patches of the test subject that are generated frgpn filter to pool local neighborhood information. In
a particular training subject. In this work, we considegection IV-D, we discuss a more principled approach to
three settings of the parametgr With 5 = 0, the aggregate statistical information from neighboring vexel

model assumes that each test image voxel is generaifg the weighted label fusion procedure.
from the training subjects with equal probability and that

the membership is voxel-wise independefit— +oco B.. Majority Voting

forces the membership of all voxels to be the same and

corresponds to assuming that the whole test subject idMiajority voting, which has been widely used as a label
generated from a single unknown training subject, drav#sion method [30], [51] can be derived as a special case
from a uniform prior. A positive, finite3 encourages Of Local Weighted VotingThe key modeling assumption

local patches of voxels to have the same membershig$ {0 séto — oc in the image likelihood term, effectively
using an improper distributiop,,(I(x); I,) o« C and
assigning equal weight to all training subjects, which
IV. LABEL FUSION BASEDIMAGE SEGMENTATION  reduces Equation (10) to:

In this section, we derive several label fusion style . N '
image segmentation algorithms based on the model and L(z) = laelf{%m% len(L(“) =6Ln).  (11)

MAP formulation described above. These algorithms
correspond to variations in the image likelihood, labél we use the probability vector image &f, (z) to define
prior and membership prior models described in Sette label prior, we arrive at the traditional Majority
tion IlI. Voting algorithm where each training image casts a

single, unit vote, with no regards to the similarity be-

tween the training image and the test image. If one uses
A. Local Weighted Voting nearest neighbor interpolation, each vote corresponds to
— 0, which, thanks to the adoptedo_ne particular Iab_el [30], Wherez_;ls tri-linear interpoja_ti

yields a fuzzy voting strategy with each vote potentially

spread over multiple labels [51].

Let us assume’
simple MRF form, implies thad/ (x) is independent and
identically distributed according to a uniform distrilani

over all labels for allx € Q:
) C. Global Weighted Fusion

p(M) = NI (9)  Here, we consideB — +o0o. As we now show, this
results in an algorithm where, at each voxel, training
where || is the cardinality of the image domain (thémages that arglobally more similar to the test image
number of voxels). Using the image likelihood term aéfter registration are weighted more. With — +oo0,
Equation (6), the segmentation problem in Equation (8)e membership prior defined in Equation (8) only takes
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nonzero values if membership values at all voxels aneeights and depend on the current label map estimate.
equal, i.e; The algorithm iterates between the weighted averaging

1. . . of the M-step in Equation(16) and the global weight
p(M)=< N if M(x.) =J Ve e, 3j (12) computation of the E-step in Equation (15). We initialize
0 otherwise. . . (1)
the EM algorithm withmy,” oc [],cq pn(I(x);I,) and
Thus Equation (4) is equivalent to a mixture modeérminate the algorithm when the average change in
where the test subject is assumed to be generated frdi@ membership weights is less than a small threshold,

a single, unknown training subject: e.g., 0.01. We found that our EM algorithm typically
N converges in fewer than 10 iterations.
p(L, I {Ln, I}) = an (L; Ln)pa(I; 1) (13)
n=1

The segmentation problem in Equation (5) reduces toD. Semi-Local Weighted Fusion

. N Finally, we consider a finite, positivg that results
L= argILnaXZ [T pa(L(x); Lo)pa(I(x); ). (14) in an algorithm, where at each voxel, training images
n=1zeQ that are more similar to the test image in a local

Equation (14) cannot be solved in closed form. Howevergighborhood of the voxelfter registration are weighted

an efficient solution to this MAP formulation can bemore. Because the MRF prior couples neighboring vox-

obtained via Expectation Maximization (EM) [20].els, the exact marginalization in Equation (5) becomes

Appendix B contains the derivations of the algorithncomputationally intractable.

Here, we present the summary. An efficient approximate solution can be obtained
via variational EM (also referred to as variational mean

E-step. Let LU-U(z) denote the segmentatiorfield) [33]. Variational EM uses a fully factorized distri-

estimate in the(i — 1)-th iteration. The E-step updatesution ¢ over the random field\/

the posterior of the membership associated with each

training image: q(M) = [ ¢=(M(2)) (18)
ni X Hpn pn(i—/(' )( )7Ln)7 (15) ven
e

to approximate the posterior distribution

where m{" is the current estimate of the posteriop(M|L,I;{Ly,I,}) of the random field A/ given
probability that the test image was generated frofhe segmentation estimale test image and the training
the n-th training image. Therefore® m{) = 1. data.g.(n) can thus be viewed as the approximate
The E- Step in Equa‘“on (15) determines a S|ng|e g|omster|0r prObablIlty that voxet was generated from the
membership for each training image, based on all voxefsth training image. The algorithm alternates between
updating the approximate posterigr(the E-step) and

M-step. The M-step updates the segmentation estimatB€ segmentatiod, (M-step). Appendix C includes the
N details of the derivation. Here, we present the summary.
e - L= (z) denote th tati timat
() o E-step.Let L (z) denote the segmentation estimate
L) = lir{%maﬁx}zm log pn(L(z) =1; Ln) (16) in the (¢ — 1)-th iteration. The approximate posterigr
is the solution of the following fixed-point equation:

= argmax mg)DL(q)n(w)), a7 .
1efl,...cy i g (M (z)) o prry (I ()3 Iaray) ¥

where D! denotes the signed distance transform of S o) 0
label in training subject.. We note that Equation (17) % PM(x) (L () ?LM(x)> exp | B Z 4y’ (M (z
uses the LogOdds model of Equation (7). The M-step YEN.
in Equation (16) performs an independent optimization

at each voxelr € €; it determines the mode of a .

lengthL vector, whereL is the number of labels. Thiswhere > qé’) (n) = 1. We compute Equation (19)
vector is computed aa weighted average of log labelrepeatedly, to iteratively solve far®.

priors (i.e., signed distance transform’,). The global

memberships computed in the previous E-step serveMsstep. The M-step updates the segmentation estiniate

(19)
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as follows:
N
L9 () = argmax Z D (n)log pp(L(x) = 1; Ly),
le{l,..L} , 3
(20)
S ()
7 !
?erﬁfr_li}igqx (n)Dn(<I>n(:U)) (21) Fig. 2. A typical segmentation obtained with the local migtu

] ) model. 2D slices are shown for visualization only. All cortgtions
Equation (21) uses the LogOdds model of Equation (#je done in 3D.

and is computed independently for each voxel. Opti-
mizing Equation (21) entails determining the mode of
a length£ vector, which is aweighted average of theanatomical variation due to dementia pathology. We
|og label priorS Corresponding to each training Subiecﬂote that these are the same SUbjeCtS used to construct
The current approximate posteri@(r@') for each training FreeSurfer's released probabilistic Segmentation atlas.
subject serve as weights. Out of the 39 subjects, 28 were healthy and 11 were
The variational EM algorithm consists of two levels oPatients with questionableM( = 5, Clinical Dementia
iterations: the inner loop that repeatedly computes Equating 0.5) or probable AlzheimersV( = 6, CDR
tion (19) in the E-step and the outer loop that alternatéy Ten of the healthy subjects were young (less than
between the E- and M-steps, until convergence. In t€ years), 9 middle-aged (between 30 and 60 years)
inner loop, at each iteration all,’s are updated using@and 9 old (older than 60 years). The MRI images are
Equation (19) and the neighboring valugg, : v € N, } of dimensions256 x 256 x 256, 1mm isotropic voxels
from the previous iteration. Once this inner loop cordnd were computed by averaging 3 or 4 scans. Each
verges, the algorithm updates the segmentation usBfpn was a T1l-weighted MP-RAGE, acquired on a 1.5T
Equation (21). To determine the convergence of the oufgiemens Vision scanner. All scans were obtained in a
loop, one can monitor the change in the segmentatidiigle session. Acquisition details are as follows: TR
estimate. In practice, we terminate the algorithm whéh7 msec, TE 4.0 msec, Tl 20 msec, Flip angl¥.
less than a predetermined fraction, e(g01% of voxels These high quality images were then gain-field corrected
change their segmentation estimate from one iterationafd skull-stripped. All the pre-processing steps were

the next. Typically convergence is achieved in fewer th&@rried out using FreeSurfer tools [69]. The anatomical
10 iterations. ROIs we usetlare white matter (WM), cerebral cortex
(CT), lateral ventricle (LV), hippocampus (HP), thalamus
V. EXPERIMENTS (TH), caudate (CA), putamen (PU), pallidum (PA), and
. . : mygdala (AM). The labeling protocol we employed
th Inf_thlts sectpn, V\ie present two setts oftgxperlmenisi%as developed by the Center for Morphometric Analysis
rei ig aexai)'ﬁgtmrignwael %ZT?;:E iusot:)nitl,c'esciggen allOd has been published and validated elsewhere [13],
i Ltjh gal ; u It i 10 lqorith : 'Il'\tlw yqu Ci3], [37], [59]. An example segmentation obtained via
ity € accuracy of segmentation algorthms. 1N€ SECOfG, ) weighted voting method of Section IV-A is
experiment employs a separate collection of brain MR . g
. . vispalized in Figure 2.
scans from 282 subjects to demonstrate that hippocamp
o e use a volume overlap measure known as the

voIl_Jme measurements obtained using the proposed IaBlce score [21] to quantify the quality of automatic
fusion framework can detect subtle volume changes -

. ) . S segmentations. Given an automatic segmentatiand
associated with aging and Alzheimer’s Disease. . ; .
the corresponding manual segmentatién the Dice

score of label is defined as
A. Experiment I: Comparison against Manual Segmen- .
{x € Q|L(x) = & L(x) = 1}]

tation Dice(l; L, L) = 2 -
The first set of experiments employs 39 brain MRI {z € QL) =1} +[{z € Q|L(gi)2
scans and corresponding manual delineations of e e .| denotes set cardinality. The Dice score varies

anatomical regions of interest (ROI) in two hemiSphereﬁetweenO and 1, with 1 indicating a perfect agreement
The images were selected from a large data set, inCIUdW&ween the two segmentations

an Alzheimer’s cohort, the recruitment of which is de-
scribed elsewhere [19], [35], [38]. The 39 subjects wereitne gata included more ROIs, e.g., cerebellum, brainsteth, 3
selected to span a wide age range and reflect a substangiatticle, which we did not use in our analysis.

22) L}
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1) Setting the Free Parameters through Training: ) : : :
The proposed label fusion algorithms have two stage: UL : ﬁ A S '? z E g = B E
registration and label fusion, each with several inpug”|0°" @ H Lol oe H R H ]
parameters. To set these parameters properly, we initial */ * E SRR
performedtraining on nine out of the39 subjects. These 7 H i,
nine subjects were then only used as training subjecl W & & % W e wm o w

qurll]r.]g the testing phhase. Th.el’.efO;eo, allbr_esults rgpolfltlgid. 3. Dice scores obtained using Majority Voting and vasidabel

In this p_ape_r are on the remaining subjects and re % for models: Nearest Neighbor (red), Tri-linear (greemj AogOdds

generalization performance. (blue). Dice scores for the two hemispheres were averagedadh
The registration stage has two independent parametes the central mark is the median, the edges of the box arg5th

(as described in Appendix A)y controls the step size and75th percentiles. The vv_hlskers extendm_? s@a_ndard dewat‘lons

| O . . around the mean, and outliers are marked individually as.a *

in the Gauss-Newton optimization anddetermines the

smoothness of the final warp. We registered 20 random

pairs of the nine training subjects for a range of values _ _
of v and a. For each pair of subjects, we measuragdll)- Figure 3 shows a box-plot of Dice scores for

pairwise overlap by computing the Dice score betwediese three different models and all the ROls. These
the warped manual labels of the “moving” subject anr&sgltsll_ndlcate that the LogOngs representation proyldes
the manual labels of the “fixed” subject. We then select&d Significantly better label prior for the label fusion
(v*,a*) that resulted in the best registration quality aféa_mework. This finding is in agreement with the main
measured by the average pairwise label overlap.  Point of [52], where the authors propose to employ
The label fusion stage also has several independdigned distance transforms when *fusing” labels, essen-
parameters, depending on the method used. Thesetially arguing that this representation is more suitable

clude the standard deviation of the image likelihood TOF @veraging complex shapes such as the cortex. In
in Equation (6), the slope of the distance transform the remainder of the paper, we use the LogOdds model

used to compute the label prior in Equation (7), and t{¥#s€d on the signed distance transform to compute the
Markov weight 8 which is nonzero for the semi-locall2P€! Prior. Note that the correspondinggjority voting

method in Section IV-D and controls the average sif§ocedure is different from simply averaging the signed

of the image patches associated with the same trainfiigiance transforms as proposed in [52] since the signed
subject distance transforms are exponentiated (see Equations (7)

To determinep, we performed nine leave-one-oufNd (11)) and converted into probabilities before av-

segmentations on the training subjects using the Majorﬁ{/aging' i Interestingly, however,. in Global and Semi-
Voting method of Section IV-B and label prior mode/0¢@l Weighted Fusion, the algorithms apply a weighted

of Equation (7) for a range of values. The value that veraging to the signed distance transforms directly at
each iteration (see Equations (17) and (21)).

achieved the best segmentation accuracy was= 1.
We employed Local Weighted Voting (Section IV-A) 3) Comparison of Label Fusion Methods and Bench-
and Global Weighted Fusion (Section IV-C) to determin@arks: In this section we provide a comparison between
a local and global optimal value for* (10 and 30), the three weighted label fusion algorithms we derived in
respectively. The optimal standard deviatieh for the our framework and four benchmarks.
local model was then used to determine the optimal valueThe first benchmark is the whole-brain segmentation
for 5* (0.75) for the semi-local model. tool available in the FreeSurfer software package [69].
We performed leave-one-out cross-validation on the 3he FreeSurfer segmentation tool employs a unified
test subjects using these optimal parameters. For eagistration-segmentation procedure that models across-
test subject, all remaining 38 subjects were treated ssanner intensity variation [24], [29]. We consider this
training subjects. a state-of-the-art whole-brain segmentation tool since
2) Comparison of Label Prior ModelsUsing the numerous imaging studies across multiple centers have
Majority Voting method (Section 1V-B), we compareshown FreeSurfer's robustness and accuracy as a seg-
three different label prior models (Section IlI-B): thenentation tool. Furthermore, this is our only benchmark
LogOdds (based on the signed distance transform) mottedt does not rely on the pre-processing step of pairwise
of Equation(7) and two instantiations of the commoregistering each training image with the test image.
approach that interpolates the vector imadg,(z) of FreeSurfers segmentation tool uses a probabilistic atlas
indicator probability vectors, based on nearest neighbmwnstructed from the training data. In our experiments,
interpolation (e.g., [30]) or tri-linear interpolation.¢e, we constructed a separate leave-one-out atlas for each
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B 0.7 :‘ : : . .e . :l ot i : LXs| o7 FS Majority STAPLE Majorityl0 Global Local Semi-Local
° . . . . Fig. 5. Average Dice scores for each algorithm (FS: FreeBurf
0.} 11 ‘\N\N; L1l \C\T\ L1l \L\V\ L1l \H\p\ L1l \T\H\ L1l \C\A\ L1l \P\U\ L1l \P\A\ L1l \A\M\ 11 Majorlty: Majorlty VOtIng, STAPLE’ MaJOrItylo, Global: @bal

Weighted Fusion, Local: Local Weighted Voting, and Semédlo
Fig. 4. Dice scores for all methods (top: left hemispheretdm:. Semi-local Weighted Fusion). Error bars show standardr.eEach
right hemisphere): FreeSurfer (red), Majority Voting @ STAPLE subject and ROI was treated as an independent sample widl equ
(light green), Majorityl0 (dark green), Global Weightedskmn weight.
(light blue), Local Weighted Voting (dark blue), Semi-lbdseighted
Fusion (purple). On each box, the central mark is the medtan,
edges of the box are thgsth and 75th percentiles. The whiskers
extend t02.7 standard deviations around the mean, and outliers andthin a pre-defined mask. Similar to [1], the mask was

marked individually as a ™. computed as the intersection of the foreground labels in
all training subjects. Finally, the training subjects that
had the smallest SSD were used for majority voting. In
test subject based on the remaining 38 subjects. the results we present here, we fix the number of training
The second benchmark is the Majority Voting schenfaibjects that were used to 10 and call the algorithm
based on the LogOdds prior, which is similar to the shapiajority10.” Later in this section, we investigate the
averaging method proposed in [52] and other votirgffects of varying the number of training subjects.
based algorithms, e.g. [30], [51]. Figure 4 reports segmentation accuracy for bench-

Our third benchmark uses the STAPLE algorithm [67]narks and the three weighted label fusion methods: Lo-
to fuse the propagated labels. STAPLE was originalfal Weighted Voting, Global Weighted Fusion and Semi-
developed to combine manual tracings of the sarh@cal Weighted Fusion. Table | provides the mean Dice
subject from multiple raters and estimate the underlyirggores averaged over all subjects and both hemispheres.
“ground truth” labeling. In doing so, it ignores MRIFigure 5 provides an overall comparison between the
intensity information and utilizes a probabilistic modefverage Dice scores achieved by the algorithms.
that encodes and estimates the rater performance for eachemi-local Weighted Fusion yields the most accurate
label. STAPLE employs Expectation Maximization teegmentations in all ROIs but the Cortex (CT). The
efficiently solve the estimation problem. One can algtifference with the benchmarks is statistically significan
use STAPLE to combine the transferred labels from ea@h< 0.05, Bonferroni corrected) for all ROIs, except the
training subject, as suggested in [53]. In our experimer@ for which FreeSurfer yields the best accuracy. Sim-
we implemented a multi-label version of STAPLE tdlarly, Local Weighted Voting yields statistically better
combine the transferred training labels. segmentations than the benchmarks.

Our fourth benchmark is a modified version of ma- On average, Local Weighted Voting and Semi-local
jority voting that efficiently selects a subset of trainWeighted Fusion yield better segmentations than Global
ing subjects that are “closest” to the test subject Weighted Fusion, mainly due to the large improvement
vote on the labels [1]. Various strategies to define tlie the white matter, cerebral cortex and lateral ventricles
similarity between images have been proposed. In die segmentation of which clearly benefits from the
experiments, we found that the following strategy gawalditional use of local intensity information. A paired
us the best results. First, all training subjects were cpermutation test between the Local and Semi-local mod-
registered using an affine transformation model. Theds reveals that in all ROIs, a statistically significant
test subject was then normalized to this space by #nprovement is achieved with the MRF model that
affine registration with the group mean image. Nexpools local intensity informationp(< 0.05, Bonferroni
we computed the sum of squared intensity differencesrrected). Yet, as can be seen from Figure 6, this
(SSD) between each training subject and test subjéoprovement is overall quite modest: less tham4%
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TABLE |
COMPARISON OF AVERAGEDICE SCORES BOLDFACE FONT INDICATES BEST SCORES FOR EACHROI THAT HAVE ACHIEVED
STATISTICAL SIGNIFICANCE (PAIRED PERMUTATION TEST. p < 0.05, BONFERRONI CORRECTED. ITALIC FONT INDICATES BEST
SCORES THAT ARE STATISTICALLY EQUIVALENT. AS A REFERENCELAST ROW LISTS APPROXIMATE AVERAGE VOLUMES

WM CT LV HP TH CA PU PA AM
FreeSurfer 0.923 0.941 0.878 0.851 0.879 0.849 0.840 0.786 0.796
Majority Vote 0.873 0.760 0.853 0.821 0.891 0.819 0.876 0.822 0.799
STAPLE 0.884 0.774 0.857 0.807 0.889 0.827 0.881 0.821 0.792
Majority10 0.861 0.750 0.869 0.827 0.897 0.848 0.886 0.829 0.806

Global Weighted Fusion 0.890 0.790 0.880 0.836 0.907 0.849  0.892 0.835 0.814
Local Weighted Fusion 0.943 0.871 0.912 0.864 0.907 0.865 0.891 0.833 0.818

Semi-local Weighted Fusion | 0.949 0.884 0914 0868 0908 0871 0.894 0.836  0.822

Volumes (& 10°mm?) 450 448 25 7 14 7 10 3 3

0.014

weights for label fusion. FreeSurfer, which we consider
to represent the state-of-the art atlas based segmentation
on average, yields better segmentation accuracy than our
remaining benchmarks. Yet we stress that FreeSurfer
integrates registration and segmentation, while the per-
formance of the remaining benchmarks were limited by
0.004 |+‘ our choice of the pairwise registration pre-processing
0.002F ’—]_‘ ’_l—‘ m Step'
’_I—‘ |+| Figure 7 illustrates the most common mistakes made
WMCT LY HR T A PU A AN by Global Weighted and Semi-local Weighted Fusion.
Fig. 6. Average Dice differences: Semi-Local Weighted &nsi OVerall, we observe that Global Weighted Fusion tends
minus Local Weighted Voting. Overall, Semi-Local Weightegsion t0 over-segment convoluted shapes such as the cor-
achieves better segmentation. Error bars show standaod err tex. This is probably due to the difficulty of aligning
such shapes. Majority voting has no way of recovering
from such errors since it does not utilize image inten-
per ROI. sity information. Local Weighted Voting and Semi-local
Majority Voting which has gained recent popularWeighted Fusion do not employ information on neigh-
ity [1], [30], [42], [51], performs significantly worse borhood structure, whereas atlas-based methods, such
than the weighted label fusion methods. This result highs FreeSurfer, do. For example, FreeSurfer uses a non-
lights the importance of incorporating image similaritgtationary, anisotropic Markov Random Field model to
information into the label fusion framework. We notegncode that the pallidum is more medial to the putamen
however, that the results we report for our Majoritand there is no white matter in between the two, i.e., they
Voting implementation are lower than the ones reportdabrder each other. Our label fusion framework does not
in [30]. This might be due to differences in the dataodel such high-level topological information and thus
and/or registration algorithm. Specifically, normalizethay yield segmentations where anatomical relationships
mutual information (NMI) was used as the registratioare violated.
cost function in [30]. Entropy-based measures such as4) The Effect of the Number of Training Subjecis:
NMI are known to yield more robust alignment resultshe previous section, for all the algorithms we employed
We leave a careful analysis of this issue to future work. leave-one-out validation strategy, where for each test
Majority10 performs slightly better than Majority Vot-subject all remaining 38 subjects were treated as the
ing. The improvement is particularly significant in subtraining data. In this section, we explore how the ac-
cortical ROIs such as the caudate. STAPLE, an alterrasacy results vary as one varies the number of training
tive weighted fusion strategy, also yields slightly bettesubjects. This point has received considerable attention
average segmentation accuracy than Majority Votinon prior work, e.g. [1], [30]. We investigate two strate-
STAPLE’s performance, however, is significantly worsgies: (1) randomly selecting a set of training subjects, (2)
than the three weighted label fusion algorithms derivesgtlecting the best training subjects that are globally most
based on the proposed probabilistic framework. Onsemilar to the test subject. As described in the previous
again, this difference underscores the importance of esection, based on [1], [42], we implemented strategy 2 by
ploying the MRI intensity information in determining thecomputing the sum of squared differences between the
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Fig. 7. The segmentations of the subject that Semi-locaied
Fusion performed the worst on. Left to right: FreeSurferplil
and Semi-local Weighted Fusion. Common mistakes (indicdg
arrows): (A) Global Weighted Fusion tends to over-segmentpdex
shapes like the cortex. (B) Semi-local Weighted Fusion doets
encode topological information, as FreeSurfer does. Hénoeay
assign an “unknown” or “background” label (white) in betwethe
pallidum (blue), putamen (pink) and white matter (green).
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Fig. 8. The average Dice score for Majority Voting (Majojignd
Local Weighted Voting (Local) as a function of the numberrafrting
subjects. We consider two strategies to select the traisirfgects:
(1) randomly selecting a set of training subjects (Rangd)s&ecting
the best training subjects that are globally most similath® test
subject (Best). The average Dice score readd®8% for Majority
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jority Voting, this monotonic behavior was also observed
and modeled in [30]. The difference between the two
label fusion algorithms is approximately constant. The
rate of improvement seems to be flattening around mid-
thirties, suggesting that we shouldn’t expect a significant
improvement in performance with the addition of more
subjects within the observed anatomical variation. For a
fixed number of training subjects, selecting the globally
most similar training subjects, i.e., strategy 2 improves
the performance of both algorithms. With strategy 2,
Majority Voting's performance however is not monotonic
and starts to decrease beyond 10. In agreement with
the empirical observations in [1], as the number of
training subjects approaches the total number of available
training subjects in the database, the performance of the
strategies for training set selection converges to the same
level, the accuracy obtained by employing the whole
dataset for training. This level of accuracy is higher
for Local Weighted Voting, the performance of which
monotonically increases with the number of training
subjects for both strategies. Interestingly, with strateg
2, the performance of Local Weighted Voting flattens
around 15 training subjects. Based on this observation,
we conclude that we can use strategy 2 to speed up
Local Weighted Voting substantially with minimal effect
on segmentation accuracy.

5) The Effect of the MRF PriorTo investigate the ef-
fect of the MRF membership prior we applied the Semi-
local Weighted Fusion method with four different values

Voting and87.8% for Local Weighted Voting, when all 38 subjectsOf 3 = {0.5,0.75,1.0,1.25} to the 30 test subjects. Note

are used.

that during the training phase, we establisitee 0.75
as optimal. Figure 9 reports the average Dice scores for
Semi-local Weighted Fusion with thegevalues, Global

intensity values of the test subject and each training sulfeighted Fusion, which corresponds fo— oo, and

ject in a pre-defined mask after affine registration. Thisocal Weighted Voting, which corresponds fo= 0.
strategy does not add a substantial computational burdemn four out of the nine ROIs (WM, CT, LV, TH)

to the algorithm, since the training subjects are c&emi-local Weighted Fusion with = 0.75 achieves the
registered offline and the affine normalization of the tebest results. In the remaining ROIS, = 0.75 yields
subject takes negligible time compared with the pairwisme of the best. This underscores the importance of
registrations required for the label fusion stage. We compeoling local intensity information in the label fusion
pare the performance of two segmentation algorithmpsocedure and the success of our training phase. The im-
using these two strategies: Majority Voting and Localrovement over Global Weighted Fusion is particularly
Weighted Voting. Figure 8 reportsf the mean Dice scomronounced for the white matter, cerebral cortex and
as a function of the number of training subjects. THateral ventricle, which are essentially defined by tissue
mean Dice score is an average over all ROIls, all 30 téstensity. For putamen (PU) and pallidum (PA), Global
subjects, and at least 20 random trials (in strategy 1). TWeighted Fusion achieves one of the best results. This
individual results for each ROI are qualitatively similar t suggests that the segmentation of these two ROIs has
this average plot and thus are not shown. For strategylittle to gain by employing local intensity information.
i.e., the random selection of the training subjects, averaghe gap between the Semi-local £ 1.25) and Global
segmentation performance monotonically improves asieighted Fusion in these two ROIls is probably because
function of the number of training subjects for botlvariational EM fails to find good optima for these regions
Majority Voting and Local Weighted Voting. With Ma- whereas Expectation Maximization is better at exploring
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. . . TABLE I
the space of solutions in the simpler case of globahy,grace RUN-TIME (IN CPUHOURS ON A MODERN MACHINE

memberships. Furthermore, this difference can be duenteL XEoN3 GHz wiTH A 32 GB RAM-) TO SEGMENT ONE
to the fact that the image intensities in the putamen angsTt SUBJECT THE TIME TAKEN UP BY REGISTRATION IS LISTED

: o . ; IN PARENTHESES GLOBAL : GLOBAL WEIGHTED FUSION,
pallidum are similar to neighboring structures and thuEOCALZ LocAL WEIGHTED VOTING, SEMI-LOCAL: SEMI-LOCAL

local intensity information is less useful in segmenting WEIGHTED FUSION.

these ROls.

FreeSurfer| Majority | STAPLE | Majority10 | Global | Local | Semi-I
1009 | 24(23) | 28(23) | 8(7) |[32(23)| 24 (23)| 402

Il Local (3=0)
Il semi-local (B = 0.5)
I semi =0.75
[ semi =1.0)
[Isemi-local (B = 1.25)
[_IGlobal (B = e)

aging and predict the onset of probable Alzheimer’s
[ Disease [25], [34].
) L IRL LT AL L AR L e A We use a FreeSurfer toom(i _I abel _vol une)
fo o A o for differert values in the MRF [69] that computes volumetric measurements from a
1g. 9. verage Dice scores 1or dirteremt values In the i H i _
membership prior of Equation (8). Error bars show standarar.e galree?nleit;sl 'rl:nhelf ttgolog;aélz legﬁgzpf(ihr\;c:unr?gdg?iir
) ) ) boundary voxels to accurately estimate the volume of
6) Runtime: Table Il lists the average run-times for harticylar ROI. As an initial experiment, we compare
the seven algorithms compared above. Majorityl0 apghyscampal volume measurements obtained via auto-
FreeSurfer are the_ fastest .algorlthms with less ,thﬂ‘fhtic segmentations (FreeSurfer, Global Weighted Fu-
10 hours of CPU time required for each test subjeclion | gcal Weighted Voting, and Semi-local Weighted
Majority10 uses only 10 training subjects, which argsion) against the ones computed from manual delin-
globally most similar to the test subject as measured Ryiions in the 39 subjects used in the first experiment.
the sum of squared differences after afflne—normallzatlofﬂigure 10-a reports volume differences between the

The initial training subject selection stage takes aboliomatic and manual segmentations; Figure 10-b shows
an hour. The second stage, i.e., Majority Voting with 10 a4ve volume difference values, defined as in [16]:
training subjects takes about a quarter of what Majority

Voting takes with all 38 training subjects. FreeSurfer, oy 1o Difference(i; I, L) = 2 V(I,L) - V(L)
the other hand, employs a parametric atlas and needs T V({I,L)+V(,L)’
to compute only a single registration. The remaining (23)

algorithms take more than 20 hours of CPU time onwhereV(l, L) denotes the computed volume of latiel
modern machine (Intel Xeon 3 GHz with a 32GB RAMJn label mapL. These results indicate that both Local

, most of which is dedicated to the many registratior¥eighted Voting and Semi-local Weighted Fusion pro-
of the test image with the training data. Local Weightedde more accurate hippocampal volume measurements
Voting and Majority Voting require minimal computationthan Global Weighted Fusion and Majority Voting.

time once the registrations are complete, since they sim-Since Local Weighted Fusion is much less computa-
ply perform voxelwise averaging. The remaining threonally expensive than Semi-local Weighted Fusion, we
algorithms (STAPLE, Global and Semi-local Weighte@hoose to employ the former algorithm in the second part
Fusion) employ iterative optimization methods (EM, EMT the experiment, where we automatically segment brain
and variational EM, respective|y) and require |0nger rutRI scans of282 individuals. This data set excludes
times. It is important to note that these run times cdhe 39 subjects used in training. The MRI images are
be reduced substantially using the same pre-select@ndimensions256 x 256 x 256 with 1mm isotropic
strategy as Majority10. In particular, our experimenioXels and were obtained using the same processing
with Local Weighted Voting suggest that we can lowetnd acquisition protocol as th&) images of the first

the run time of this method by at least a half with almogxperiment. The population included young (less tB@n
no reduction in accuracy. years,N = 105), middle-aged (between 30 and 60 years,

N = 30) and old subjects (older than 60 yedys= 78)
_ _ (see Figure 11), in addition to patients suffering from
B. Experiment II: Hippocampal Volumetry very mild to mild Alzheimer's Disease (AD)N = 69).

In a second set of experiments, we aim to demoAmong the patients, 48 subjects met the Clinical Demen-
strate that the proposed label fusion framework yieldis Rating (CDR) [44] criteria of questionable AD (CDR
accurate volumetric measurements of the hippocampQ<$) and21 subjects had probable AD (CDR 1). The
Hippocampal volume has been shown to correlate wi@DR 0.5 subpopulation contained 32 women, whereas
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Fig. 10. Hippocampal volume differences on the data fromeExp Fi9: 12.  Hippocampal volumes for five different groups in Ex-
iment 1. On each box. the central mark is the median. the edgesperiment 2. Error bars indicate standard error across stshj8tars
the box are the5th and75th percentiles. The whiskers extendzg ~Indicate that the volume measurements in the present greugiatis-
standard deviations around the mean. (a) Automatic minusuisla tically significantly smaller than the measurements in téigimboring

volumes. (b) Relative volume differences (Equation (23)). grougotlo) the left. (Unpaired, single-sided t-testp*< 0.05, **
p <0.

The proposed framework should be viewed as an
initial attempt to generalize segmentation algorithms
based on label fusion, or a multi-atlas approach, which
have recently shown promise and gained popularity
with hardware advancements and developments of fast
registration algorithms. In this paper, we investigated
several modeling assumptions and derived four different
instantiations of label fusion, one of which is the popular
Majority Voting.
the probable AD group included 21 women. The groups Majority Voting simply determines the most frequent
did not differ in years of education. Detailed descriptiorlgbel at each voxel, where each training subject gets an
of the recruitment procedures and criteria for subjegglual vote. Yet, recent work suggests that incorporating
recruitment have been published elsewhere [19], [3%fie similarity between the test image and training sub-
[38]. jects can improve segmentation quality. For example, [1]

Based on age and clinical data, we subdivided tig&nploys a subset of training subjects that are close in age
282 subjects into five groups. The first three group@ the test subject. Alternative strategies include usimg a
contained healthy individuals of different age groupdhage-based measure to quantify anatomical similarity,
young, middle-aged and old. The fourth group includegither at a local or global level. This similarity can then
the questionable AD patients (CDR 0.5) and the fiftyeigh the label votes during fusion, where more similar
group included the probable AD (CDR 1.0) subpopuldtaining subjects are given a larger weight.
tion. Our theoretical development based on the proposed

Figure 12 shows the average hippocampal voluni@n-parametric probabilistic model yields three such
measurements for these five groups. Volumetric redudgorithms, which solve the same problem for different
tion due to aging and AD can be seen from thigettings of a single model paramefer This parameter
figure. These findings are in agreement with knowgpntrols the interactions between neighboring voxels in
hippocampal volume changes in AD and aging [23he Markov prior we construct on the latent member-
and demonstrate the use of the proposed label fus@tip random field encoding the (unknown) association
method on a large pool of subjects, for which manufetween the test subject and training data. Smatler
segmentation may not be practical. values allow for this association to vary more locally.
Specifically, 5 = 0 treats each voxel independently,
whereas — oo corresponds to assuming a single
association for the whole image. A finite, nonzeto

Our experiments demonstrate the accuracy and usecourages local patches of voxels to have the same
fulness of the label fusion framework as a segmentatiorembership.
tool. The proposed framework yields better accuracy These three cases are solved with different inference
than current state-of-the-art atlas-based segmentationadgorithms. The most efficient case correspondg te
gorithms, such as FreeSurfer. 0, where the global optimum can be computed via simple

0
10 20 30 40 50 60 70 8 90 100
Age

Fig. 11. Age histogram of 282 subjects in Experiment 2.

VI. DISCUSSION
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voxelwise counting. The other two cases are solved with
more expensive iterative optimization methods, such as
Expectation Maximization and Variational EM. Exact
inference for the finite, nonzerd case is intractable,
yet our experiments suggest that approximate numerical

solutions yield good segmentation accuracy.

4)

The development of the proposed framework makes
several simplifying assumptions. In the following, we
discuss a number of directions that can be explored to
relax these assumptions. We consider these as important
avenues for future research, which promise to improve
the performance of label fusion style segmentation.

1)

2)

3)

In the graphical model of Figure 1, we made
the convenient assumption that the transforma-
tions {®,} are known and solved for these in 5)
a pre-processing pairwise registration step (see
Appendix A). Ideally, however, one would like to
integrate over all possible transformations, which
has a prohibitively high computational cost. Recent
work attempted to approximate this integration for
a single registration [3], [40]. A more practical
approach is to compute the registrations jointly
with the segmentations, cf. [8], [72]. Here, we
avoided this particular route, since the multiple
registrations performed between the test subject
and training data were already computationally
challenging.

The simple additive Gaussian noise model pre-

14

multiple atlases [54]. We believe a combination
of the label fusion framework presented in this
paper and iCluster can be employed to reduce the
computational burden by summarizing the training
data with a small number gémplateq66].

An alternative strategy to reduce the computa-
tional demand of label fusion is to employ a non-
parametric model in a single coordinate system, to
which the test subject is normalized with a single
registration procedure. This approach, which en-
tails the co-registration of the training subjects akin
to atlas-based segmentation, was recently shown to
produce accurate segmentation [5], [17]. The ap-
plication of this strategy within the proposed label
fusion framework is a direction to be explored.
Another strategy to reduce computational burden is
to pre-select the most useful training subjects and
apply label fusion on these, as recently proposed
by Aljabar et al. [1]. We explored one particular
instantiation of this approach, where the subset
of training subjects was selected to include the
training subjects globally most similar to the test
subject after affine normalization. It is clear that
this criterion to pre-select the most relevant train-
ing subjects is related to our definition of the image
likelihood termp(I; I,,). Yet, a crucial difference is
that the image likelihood term is computed by non-
linearly registering the training and test images,
while the pre-selection is done based on an affine

sented in Section llI-A has two crucial conse-
guences: (@) the registration cost function is a
sum of squared intensity differences, and (b) in
weighted label fusion, the weights are a function of VII. CONCLUSION

sum of squared intensity differences, i.e., anatom-In this paper, we investigated a generative model that
ical similarity is measured based on squared dieads to label fusion style image segmentation methods.
ferences of intensity values. This model makes thithin the proposed framework, we derived several
algorithm sensitive to intensity variations due talgorithms that combine transferred training labels into
imaging artifacts. Thus, the presented algorithn@s single segmentation estimate. With a dataset of 39
are only suitable for intensity-normalized imagedrain MRI scans and corresponding label maps obtained
An alternative strategy is to employ a more sophigrom an expert, we empirically compared these segmen-
ticated image likelihood model that would motivateéation algorithms with FreeSurfer's widely-used atlas-
information theoretic similarity measures, such dsased segmentation tool [69]. Our results demonstrate
mutual information. that the proposed framework yields accurate and robust
The main drawback of label fusion style algosegmentation tools that can be employed on large multi-
rithms is the computational complexity introducedubject datasets. In a second experiment, we employed
by the multiple pairwise registrations and the masne of the developed segmentation algorithms to com-
nipulation of the entire training data. Traditionapute hippocampal volumes in MRI scans of 282 subjects.
atlas-based segmentation approaches avoid tAiscomparison of these measurements across clinical
problem by using parametric models of anatomicahd age groups indicate that the proposed algorithms
variation in a single coordinate system. In recemtre sufficiently sensitive to detect hippocampal volume
work, we used a mixture modeling strategy, calledifferences associated with early Alzheimer's Disease
iCluster, to model anatomical heterogeneity witAnd aging.

normalization. Alternative pre-selection strategies
should also be investigated.
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Singapore_ K. Van Leemput was Supported in part by thewe impose an elastic-like regUIarization on the sta-

= v(®(x, 1))

Academy of Finland, grant number 133611. tionary velocity field:
1 0? 2
APPENDIX A p(® = exp(v)) = —exp |-\ E E (—ka(:v) ) )
Z)\ X 69@ =y
PAIRWISE REGISTRATION veih=123 9T;

In deriving the segmentation algorithms in this paper, _ _ (_24)
we make a crucial simplifying assumption that the warpéh€re A > 0 is the warp stiffness parameter, is a
{®,} that map individual training images to the tegpartition function that depends only ok andz; and
image coordinates are observed. In practice, we comptitedenote thej’th and £'th component (dimension) of
these warps via a pairwise registration algorithm. OvBpSitionz and velocityv, respectively. Higher values of
the past decade, a wide variety of registration algorithif2€ Warp stifiness parametaryield more rigid warps.
have been proposed in the literature. The optimal choicel® €onstruct the registration objective function, we

of a registration algorithm remains an open question tH&tSUMe a simple additive Gaussian noise model that leads

can be partially guided by a recent study that compare%oafhe following optimization problem for registering the

broad set of pairwise registration algorithms [39]. Herd&;th training image to the test subject:
we make our choice based on the following three criteria:  ;n _ argmin Z[(I(y) — Iy(exp(v)(y)))*+

1) Speed and computational efficien8jnce the test yeQ
subject must be registered with each training sub- 92 9
ject, we need to perform registration many times. 2)0° Z va(x) _ ) ], (25)
Recent algorithms based on Thirion’s Demons 3,k=1,2,3 J Y
algorithm [61] yield fast and efficient inter-subject, nare o2 is the stationary noise variance, afg, 2

registration. exp (")

2) Rich deformation modelThe quality of the Seg-  note that Equation (25) warps the training image (i.e.,
mentation results depends on the accuracy of gy |ate) which makes the model truly probabilistic (for
alignment. Klein et al.’s study [39] found that &, iscussion see [2], [40]). Bi-directional or symmetric
rich, dense deformation model, in general, yieldg,, 4 ches that apply warps to both images seem to yield
better ah_gnment accuracy. _In this _Work, we _re|¥nore accurate alignment [7], [9], [14], [65]. Recently,
on a particular parametrization of diffeomorphic e hronosed an objective function that reconciles the
smooth and invertible — transformations. practical advantages of symmetric registration with the

3) SSD similarity measurdo be consistent with our sy mmetric nature of image-template registration [56]:
choice of the image likelihood model in Equa-

tion (6), we use the sum of squared differencesy® — argmin y [I(y) _ fn(eXp(v)(y))r

(SSD) as the similarity measure. As we discuss in v en

Section VI, this particular choice is probably not - 2

optimal and can be improved by employing more ~ + [I(GXP(—U)(Z/)) - In(y)} det(V exp(—v)(y))

sophisticated similarity measures, e.g., mutual in- 2 2

formation. +dxo? Y (%%(Cﬂ) m:y) ; (26)

Based on these criteria, we choose the asymmetric Jh=123 7

bidirectional image-template registration algorithm; devhere det(V exp(—v)(y)) denotes the determinant of
tails of which are presented in [56]. This method is baséide Jacobian of the inverse transformatietp(—v)(+)
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with respect to the spatial coordinates and arisedere H(q) denotes the entropy af.
from the change of coordinateg = &®(z) and  One interpretation of the Expectation Maximization
discretization of the continuous similarity measuralgorithm is based on a minimization of the free energy

- 2 :
Jio [I(ac) _ In(q)(w))} dz. The Jacobian term is larger®Ver the two variableg and L [45]. The free energy

than1 in regions where an area in imageis mapped provides a bound on the true objective function, which is
to a smaller area if. and less tharl elsewhere. optimized via coordinate-descent by alternating between

We solve Equation (26) using the log-domain Demor{g€ Optimization overL for fixed ¢ and vice versa.
framework [65], which decouples the optimization of'ucially, we can see from Equation (29) that for a fixed
the first and second terms by introducing an auxiliady 9" (M) = p(M|L,I;{Ly, I,}) minimizes (-, L).
transformation. The update warp is first computed u&® computation ofg" (M) is called the E-step. In
ing the Gauss-Newton method. The regularization 8¢ M-step, the algorithm minimize&(q*(M), L) over
achieved by smoothing the updated warp field. It cdn Since 7(¢*, L) is equal to the objective function
be shown that the smoothing kernel corresponding gyaluated afL, the M-step is guaranteed to improve the
Equation (24) can be approximated with a Gaussiappiective fungtlon, effectively guaranteeing convergenc
K(z) x exp(—a).,_4,57), Wherea = gl and to a local optimum. _
~ > 0 controls the size of the Gauss-Newton step [12] We can now derive the update equations for the two

[46]. steps B
E-step: For a fixed segmentation estimafé'~!, we

APPENDIX B obtain
DERIVATION OF THE EM ALGORITHM

Here we present the derivation of the EM algorithm - (i-1)
for the Global Weighted Fusion method presented in o< p(LY IIM; { Ly, I })p(M)
Section IV-C. We first rewrite Equation (1) using Equa- = par (LD { L, Wpar (1; {1, V)p(M), (31)

tion (fl)' where Equation (31) follows from the assumptions of the
L = argmaxlog Y _ p(M)p(L, I|M;{Ln, I}) generative model presented in Section Il. Since, in the
r M global model we assumé — oo, p(M) (and therefore
= argmax log p(L, I3 {Ln, I }). (27)  ¢*(M1)) is zero unles () is equal to a constant index
n e {1,...,N} for all z € Q. We denote these nonzero
elements withm,,. Thus, the E-step can be simplified to

¢V (M) = p(M|LU, I {Ly, I})

Let ¢ be any distribution on\/. The objective function
of Equation (27) is bounded from below by

7 . r(i—1).
log p(L, I3 {Ln, In}) — KL(g(M)|[p(M]|L, I; { L, I..})), my) o< pa(ls Ta)pu(LE; L), (32)
(28)

where KL(-||) denotes the non-negative KullbackM-step: For a given( (or, equivalentlyn’), the label
Leibler (KL) divergence defined as: maps are updated using Equation (30):

KL(q(M)|[p(M|L, I;{Ln, In})) = L = argmax > ¢ (M) log p(L, I, M3 {Ly, I,})

q(M) b
> a(M)log : . (29 ;
m p(M|L, I;{L,,I,}) = argznaxZZm%) log pn(L(z); Ly) (33)

Equation (28) is the negative of what is usually called the n el

free energy [33], which we will denot&(q, L) since itis Where Equation (33) uses Equation (32) and the assump-
a function of two unknown variables: the label map (seons of the generative model presented in Section II,
mentation)L and the distribution;. The KL divergence and omits terms that are constant with respectZto
achieves zero only af*(M) = p(M|L,I;{L,,1,}), in Note thatin Equation (33), each voxel can be optimized
which case the negative free enerdyq*, L) is merely independently.

a function of L and is equal to the objective function of

Equation (27). APPENDIXC
By simple algebraic manipulations, the free energy caRERIVATION OF THE VARIATIONAL EM ALGORITHM
be equivalently expressed as Here, we derive the variational EM algorithm for the
F(q,L) = —H(q) — ZQ(M) log p(L, I, M;{Ly, I,}), Semi-local Weighted Fusion method presented in Sec-
v; tion IV-D. The key difference between the EM algorithm

(30) derived in the previous section and the variational EM
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algorithm is due to the MRF prigs(M) (Section 11I-C) obtain

with a finite, nonzerags that allowsM (x) to vary spa-

tially, while encouraging neighboring voxels to take thé¢"” = argmin Z Eq, (6 Z qy(M(x))

same value. The coupling between neighboring voxels 7 zeq yENX

introduced by the MRF prior makes the M-step of the log ¢z (M(z)) )
algorithm computatllonally mtrgctable. _One approach to PAI(a) (L(z—l)(x);LM( Py (L ()5 Ing(ay)
compute an approximate solution is to impose a structure (40)

ongq [33]. This loosens the lower bound of Equation (28),

since ¢*(M) = p(M|L,I;{L,,1,}) may not have the To solve Equation (40), we can differentiate the objective
structure we impose op. In other words, variational function with respect to eacy and equate to zero. With
EM relaxes the optimization problem by replacing ththe probability constraint, i.ey,, ¢t (M(x) = n) = 1,
objective function with an easier-to-optimize loose lowerz € €2, this implies Equation (19).

bound.

In our model, we use a (standard) fully factorizel-step: With the structure of Equation (34),
structure forg: the segmentation update can be computed using

Equation (30):
= H Qm(M(x)) (34)

el L0 = argmax Z Z q, =n)

E-step: First, we derive the update rule farfor fixed reqn=l

L= Substituting Equation (3) into Equation (28) and x log p(L(x), ( JIM (@) = n; Ln, In) (41)
omitting terms not containing/, we obtain
9 of = argmax Z Z qs =n)logp,(L(z); Ly)
¢ = argmin KL(q(M)|[p(M|LY™, I;{Ln, I,.})) zen=1
q (42)
(35) Since each voxel can be considered independently, we
_ argmmz q(M) obtain Equation (20).
p(LG=D, I|M;{ Ly, I, })p(M)
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