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Abstract

The registration of images is a task that is at the core of many applications in computer vision. In computational neuroimaging where
the automated segmentation of brain structures is frequently used to quantify change, a highly accurate registration is necessary
for motion correction of images taken in the same session, or across time in longitudinal studies where changes in the images can
be expected. This paper, inspired by Nestares and Heeger (2000), presents a method based on robust statistics to register images
in the presence of differences, such as jaw movement, differential MR distortions and true anatomical change. The approach we
present guarantees inverse consistency (symmetry), can deal with different intensity scales and automatically estimates a sensitivity
parameter to detect outlier regions in the images. The resulting registrations are highly accurate due to their ability to ignore outlier
regions and show superior robustness with respect to noise, to intensity scaling and outliers when compared to state-of-the-art
registration tools such as FLIRT (in FSL) or the coregistration tool in SPM.
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1. Introduction

There is great potential utility for information extracted from
neuroimaging data to serve as biomarkers, to quantify neurode-
generation, and to evaluate the efficacy of disease-modifying
therapies. Currently, the accurate and reliable registration of
images presents a major challenge, due to a number of fac-
tors. These include differential distortions that affect longitu-
dinal time points in different ways; true, localized anatomical
change that can cause global offsets in the computed regis-
tration, and the lack of inverse consistency in which the reg-
istration of multiple images depends on the order of process-
ing, which can lead to algorithm-induced artifacts in detected
changes. Thus, the development of an accurate, robust and in-
verse consistent method is a critical first step to quantify change
in neuroimaging or medical image data in general.

Since the object of interest is typically located differently in
each acquired image, accurate geometric transformations are
necessary to register the input images into a common space.
Approaches based on robust statistics are extremely useful in
this domain, as they provide a mechanism for discounting re-
gions in the images that contain true differences, and allow one
to recover the correct alignment based on the remainder of the
data. Inverse consistency is critical to avoid introducing bias
into longitudinal studies. A lack of inverse consistency in reg-
istration is likely to bias subsequent processing and analysis, as
documented in Yushkevicha et al. (2009). The goal of this work
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is thus to develop a robust and inverse consistent registration
method for use in the analysis of neuroimaging data. The core
application of this technique is intra-modality and intra-subject
registration with important implications for:

1. Motion correction and averaging of several intra-session
scans to increase the signal to noise ratio,

2. highly accurate alignment of longitudinal image data and
3. initial registration for higher-dimensional warps.

Although the remainder of this paper deals with neuroimaging
data, the method can be used for other image registration task
as well.

Highly accurate rigid registrations are of importance when
averaging multiple scans taken within a session to reduce the
influence of noise or subject motion. Since it is nearly impos-
sible for a person to remain motionless throughout a 20 minute
scan, image quality can be increased by taking shorter scans and
performing retrospective motion correction (Kochunov et al.,
2006). Many common sequences are short enough to allow for
several structural scans of the same modality within a session.
Here even a slightly inaccurate registration will introduce addi-
tional artifacts into the final average and likely reduce the accu-
racy, sensitivity and robustness of downstream analysis.

Compared with cross-sectional studies, a longitudinal de-
sign can significantly reduce the confounding effect of inter-
individual morphological variability by using each subject as
his or her own control. As a result, longitudinal imaging stud-
ies are becoming increasingly common in clinical and scien-
tific neuroimaging. Degeneration in subcortical structures and
cortical gray matter is, for example, manifested in aging (Jack
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Figure 1: Robust registration of longitudinal tumor data (same slice of five acquisitions at different times). Left: target (first time point). Top row: aligned images.
Bottom row: overlay of detected change/outlier regions (red/yellow). The outlier influence is automatically reduced during the iterative registration procedure to
obtain highly accurate registrations of the remainder of the image; see also Fig. 6.

et al., 1997; Salat et al., 1999, 2004; Sowell et al., 2003, 2004),
Alzheimer’s disease (Dickerson et al., 2001; Thompson et al.,
2003; Lerch et al., 2005), Huntington’s disease (Rosas et al.,
2002), multiple sclerosis (Sailer et al., 2003) and Schizophre-
nia (Thompson et al., 2001; Kuperberg et al., 2003; Narr et al.,
2005) and has been useful towards understanding some of the
major pathophysiological mechanisms involved in these con-
ditions. As a result, in vivo cortical thickness and subcortical
volume measures are employed as biomarkers of the evolution
of an array of diseases, and are thus of great utility for eval-
uating the efficacy of disease-modifying therapies in drug tri-
als. To enable the information exchange at specific locations
in space, highly accurate and unbiased registrations across time
are necessary. They need to be capable of efficiently dealing
with change in the images, which can include true neurodegen-
eration, differential positioning of the tongue, jaws, eyes, neck,
different cutting planes as well as session-dependent imaging
distortions such as susceptibility effects.

As an example see Figure 1 showing longitudinal tumor data
(same slice of five acquisitions at different times, MPRAGE,
256 × 256 × 176, 1mm voxels) registered to the first time point
(left) with the proposed robust method. The five time points are:
5 days prior to the start of treatment, 1 day prior, 1 day after the
start of treatment, and 28, 56 days after the start of treatment.
Despite of the significant change in these images the registra-
tion is highly accurate (verified visually in non-tumor regions).
The bottom row depicts the outlier weights (red/yellow over-
lay), which are blurry regions of values between 0 (outlier) and
1 (regular voxel) that label differences in the images. In addi-
tion to the longitudinal change in tumor regions and consequen-
tial deformation (e.g. at the ventricles), the robust method also
picks up differences in the scalp, eye region and motion arti-
facts in the background. In our robust approach the influence
of these differences (or outliers) is reduced when constructing

the registrations, while they have a detrimental influence on the
final registration result in non robust methods.

Statistically, robust parameter estimation has a history of
supplying solutions to several computer vision problems (Stew-
art, 1999) as it is capable of estimating accurate model parame-
ters in the presence of noise, measurement error (outliers) or
true differences (e.g. change over time). The approach pre-
sented here is based on robust statistics and inspired by Nestares
and Heeger (2000), who describe a robust multi-resolutional
registration approach to rigidly register a set of slices to a full
resolution image. Our approach, however, is designed to be
inverse consistent to avoid introducing a bias. It also allows
the calculation of an additional global intensity scale parame-
ter to adjust for different intensity scalings that can be present
especially in longitudinal data. A more complex intensity pre-
processing is therefore not needed in most cases. Furthermore,
we automatically estimate the single parameter of the algorithm
that controls its sensitivity to outliers. This is a necessary addi-
tion, since a fixed parameter cannot adequately deal with differ-
ent image intensity scales, which are common in MRI. In ad-
dition to the multi resolutional approach described in Nestares
and Heeger (2000) we use moments for an initial coarse align-
ment to allow for larger displacements and situations where
source and target may not overlap. Finally, we describe the
registration of two full resolution images (instead of only a set
of slices) and explain how both rigid and affine transformation
models can be used in the symmetric algorithm. We demon-
strate that our approach yields highly accurate registrations in
brain regions and outperforms existing state-of-the-art registra-
tion algorithms.

The remainder of this paper is organized as follows. After
discussing related work and introducing the theoretical back-
ground, such as robust statistics in Section 2, we present our
symmetric registration model, different transformation models
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as well as intensity scaling in Section 3. Then we describe the
registration algorithm in detail, taking care that the properties
of the theory are carried over to the implementation (Section
4). We specifically focus on maintaining inverse consistency
by resampling both images into a ’half way’ space in interme-
diate steps as opposed to resampling the source at the estimated
target location. This asymmetric sampling, which is commonly
used, introduces a bias as the target image will not be resampled
at all, and will thus be less smooth than the resampled source. In
Section 5 (Results) we demonstrate the superiority of the pro-
posed method over existing registration algorithms with respect
to symmetry, robustness and accuracy on synthetic and real data
as well as a motion correction application. The software imple-
menting the presented robust registration is publicly distributed
as part of the FreeSurfer (surfer.nmr.mgh.harvard.edu) software
package as mri robust register.

2. Background

2.1. Related Work on Registration
Over the last 20 years methods for the registration of im-

ages (and in particular medical images) have been studied in-
tensely (see e.g. Maintz and Viergever (1998); Maes et al.
(1999); Hill et al. (2001) for surveys and comparisons). Many
different applications domains exist for registration, including
multimodal intra-subject registration, cross-subject volumetric
registration, surface-based registration etc., each of which re-
quire domain-specific approaches to maximize accuracy. Some
of the most prominent intensity based algorithms are Cross-
Correlation (Collins et al., 1995), Mutual Information (MI)
(Maes et al., 1997, 1999; Wells et al., 1996), Normalized Mu-
tual Information (NMI), and Correlation Ratio (CR) (Roche
et al., 1998). Recently (Saad et al., 2009) found registration
errors when comparing CR and MI and proposed a new cost
function using a local Pearson correlation.

Intensity based methods consider information from the
whole image and are often deemed to be more reliable and ac-
curate than feature based methods (West et al., 1997, 1999).
Driving the optimizations based on geometrically defined fea-
tures such as points (Schönemann, 1931; Evans et al., 1989;
Bookstein, 1991), edges (Nack, 1977; Kerwin and Yuan, 2001),
contours (Medioni and Nevatia, 1984; Shih et al., 1997) or
whole surfaces (Pelizzari et al., 1989; Fischl et al., 1999; Dale
et al., 1999; Greve and Fischl, 2009) has the advantage of re-
ducing computational complexity, but introduces reliability dif-
ficulties when extracting/placing the features. Furthermore, ex-
tracting surfaces is a complicated and time consuming process
in itself and not feasible in cases where only an initial rigid reg-
istration is needed or for the purpose of averaging two structural
scans from the same session. Additionally, hybrid approaches
exist such as Greve and Fischl (2009), a surface based approach
that additionally incorporates information derived from local
intensity gradients. Note that a large body of work describes
rigid registration in the Fourier domain, e.g. van der Kouwe
et al. (2006); Bican and Flusser (2009); Costagli et al. (2009),
but since we expect and wish to detect spatial outliers/change
we operate in the spatial domain.

A number of different registration methods are implemented
in freely available software packages. The widely used reg-
istration tool FLIRT (Jenkinson et al., 2002), part of the FSL
package (Smith et al., 2004), implements several intensity
based cost functions such as standard least squares (LS), corre-
lation ratio (CR) and mutual information (MI) as well as sophis-
ticated optimization schemes to prevent the algorithms from
being trapped in local minima. Another freely available and
widely used registration tool is based on Collignon et al. (1995)
and distributed within the SPM software package (Ashburner
and Friston, 1999). In this paper, we use these two programs as
standards to evaluate the accuracy and robustness of our tech-
nique.

Instead of applying a rigid or affine transformation model,
more recent research in image registration has focused on non-
linear warps, which typically depend on an initial affine align-
ment. Non-linear models include higher-order polynomials
(Woods et al., 1992, 1998), thin-plate splines (Bookstein, 1989,
1991), B-splines (Unser et al., 1993; Kostelec et al., 1998;
Rueckert et al., 1999; Kybic et al., 2000), discrete cosine ba-
sis functions (Ashburner and Friston, 1997; Ashburner et al.,
1997), linear elasticity (Navier-Stokes equilibrium) (Bajcsy and
Kovavcivc, 1989; Gee et al., 1993) and viscous fluid approaches
(Gee et al., 1993; Christensen et al., 1994). Specifically a
method described in Periaswamy and Farid (2006) presents
promising results. It is based on a linear model in a local neigh-
borhood and employs the expectation/maximization algorithm
to deal with partial data. Similar to our approach, it constructs
a weighted least squares solution to deal with outlier regions,
however, with an underlying globally non-linear (and usually
asymmetric) transformation model.

Several inverse consistent approaches exist for nonlinear
warps. Often both forward and backward warps are jointly es-
timated, e.g. (Christensen and Johnson, 2001; Zeng and Chen,
2008). Others match at the midpoint (Beg and Kahn, 2007) or
warp several inputs to a mean shape (Avants and Gee, 2004).
Yeung et al. (2008) describe a post processing method to create
a symmetric warp from the forward and backward warp fields.

While nonlinear methods are often capable of creating a
perfect intensity match even for scans from different subjects
(change information is stored in the deformation field), it is not
trivial to model and adjust the parameters of these algorithms, in
particular the trade-off between data matching and regulariza-
tion. In addition, it is worth noting that perfect intensity match-
ing does not guaranty accurate correspondence. These methods
need to be designed to allow the warp enough freedom to accu-
rately match the data while restricting the algorithm to force the
warp to behave ’naturally’, for example preventing the merging
of two gyri into one, or more simply to ensure smoothness and
invertibility. Due to their robustness, transformation models
with low degrees of freedom are generally better suited for tasks
where no change (e.g. motion correction) or only little change
(e.g. longitudinal settings) is expected. Furthermore, rigid or
affine registrations are frequently used to initialize higher order
warps. We therefore focus on highly accurate, low degrees of
freedom, intensity based registrations in this work.
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Figure 2: The robust Tukey’s biweight function (green) limits the influence of
large errors as opposed to the parabola (red).

2.2. Robust Statistics

The field of robust statistics describes methods that are not
excessively affected by outliers or other model violations. Clas-
sical methods rely heavily on assumptions that may not be met
in real applications. Outliers in the data can have a large influ-
ence on the results. For example, the mean is influenced arbi-
trarily by a single outlier, while the median is robust and stays
fixed even with outliers present. That is why robust parameter
estimation plays an import role in computer vision applications
(see e.g. Stewart (1999)).

A measure for robustness is the breakdown point that de-
scribes the fraction of incorrect (arbitrarily large) observations
that can be present before the estimator produces an arbitrarily
large result. The breakdown point of the mean is 0 while for
the median it is 0.5, which is the maximum attainable, as for
values above one half, it is impossible to distinguish between
the correct and the contaminating distribution.

M-estimators are a generalization of maximum likelihood
estimators (MLEs) and were introduced by Huber (1964).
Instead of computing the estimator parameter θ minimizing
−

∑n
i=1 log f (xi, θ) for a family of probability density functions f

of the observations x1 . . . xn as done for MLEs, Huber proposed
to minimize any general function ρ:

θ̂ = argmin
θ

 n∑
i=1

ρ(xi, θ)

 (1)

The mean, for example, minimizes the sum of squared errors, so
ρ(xi, θ) := (xi − θ)2 (where “:=” means “define”). The median
can be understood as an M-estimator minimizing the sum of
absolute errors ρ(xi, θ) := |xi − θ|. Since most commonly used ρ
can be differentiated, the solution can be computed by finding
the zeros to

∑
ψ(xi, θ) with ψ(xi, θ) := ∂ρ(xi, θ)/∂θ. For most ρ

and ψ no closed form solutions exist and iterative methods are
used for the computations. Usually an iteratively reweighted
least squares (IRLS) algorithm is performed (see next section).
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Figure 3: Distribution of residuals after successful registration together with the
Gaussian (red) and robust (green) models (produced by the two functions from
Fig. 2).

A specific ρ used often in robust settings is the Tukey’s bi-
weight function (see Figure 2):

ρ(x) :=
 c2

2 (1 − (1 − x2

c2 )3) if |x| ≤ c
c2

2 otherwise
(2)

For small errors the biweight is similar to the squared error, but
once a specific threshold c is reached it flattens out. Therefore
large errors of outliers do not have an arbitrarily large influence
on the result. Often the (scaled) derivative of ρ:

ψ(x) := ρ′(x) =
{

x (1 − x2

c2 )2 if |x| ≤ c
0 otherwise

(3)

is referred to as the Tukey’s biweight function, as it is used in
the actual computations.

To further highlight the difference between the robust and
least squares approach Figure 3 depicts the distribution of the
residuals after a successful registration (zoom-in into the his-
togram of residuals normalized by the number of voxels). For
least squares registration, the ideal residuals would be Gaussian
noise, and in fact most residuals are around zero (the high peak
there is cut off by the magnification). However, due to true
differences in the images caused by distortion and anatomical
change, larger residuals exist that cannot be explained by Gaus-
sian noise models. These regions have extremely low probabil-
ity under the Gaussian model (red curve in Fig. 3), which causes
them to have a disproportionately large influence on the regis-
tration. As mentioned above, even a single large outlier can
have an arbitrarily large effect on the result of the least squares
registration that is only optimal for zero-mean, unit variance
Gaussian noise. Together with the residual distribution Fig. 3
shows two curves: 1

√
2π

e−0.5 f (x) where f (x) is either the parabola
x2 (red) or the Tukey’s biweight function ρ(x) (green). It can
be seen that the parabola results in the Gaussian (red curve) and
cuts off the tails significantly while the green function produced
by the Tukey’s biweight better models the larger residuals.
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2.3. Iteratively Reweighted Least Squares
Consider a linear regression model with design matrix A and

N observations in vector ~b:

~b = A~q + ~r (4)

The M-estimator then minimizes the objective function

N∑
i=1

ρ(ri) =
N∑

i=1

ρ(bi − ~ai~q) (5)

where vector ~ai is the i-th row of the matrix A. When using
least squares estimation (ρ(ri) := r2

i ) we obtain the standard
least squares linear regression solution, which can be solved
directly. For a general ρ with derivative ψ := ρ′ one proceeds
by differentiating the objective function (with respect to ~q) and
by setting the partial derivatives to zero:

N∑
i=1

ψ(bi − ~ai~q)~ai = ~0

⇔

N∑
i=1

(bi − ~ai~q)wi~ai = ~0 (6)

when setting the weights wi := ψ(ri)
ri

. These equations describe
a weighted least squares problem that minimizes

∑
w2

i r2
i . Since

the weights depend on the residuals ri, which in turn depend
on the estimated coefficients (which depend on the weights), an
iteratively reweighted least squares algorithm is used. It selects
an initial least squares estimate (all weights equal to one), then
calculates the residuals from the previous iteration and their
weights, and then solves for a new weighted least squares es-
timate:

~q ( j+1) =
[
AT W ( j)A

]−1
AT W ( j)~b (7)

with W ( j) := diag(w( j)
i ) the current weight matrix in iteration ( j)

(wi depends on the parameter vector ~q ( j)). These iterations are
continued until a maximum number of iterations is reached or
until the total squared error:

E2 :=
∑N

i=1 wir2
i∑N

i=1 wi
(8)

cannot be reduced significantly in the next iteration. It should
be noted that the residuals ~r := ~b − A~q are normalized before
computing the weights in each step:

~r◦ :=
1

σ(~r)
~r. (9)

σ is a robust estimator for the standard deviation obtained by a
scaled version of the median absolute deviation (MAD):

σ(~r) := 1.4826 mediani{|ri −median j{r j}|} (10)

where the median is taken over all elements, i, j = 1, ...,N.1

Fig. 4 shows a zoom-in of the distribution of residuals (blue)

1The constant is a necessary bias correction. The MAD alone estimates the
50% interval ω around the median rm of the distribution of r: P(|r − rm | ≤ ω) =
0.5. Under normality ω = 0.6745 σ ⇒ σ = 1.4826 ω.
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Figure 4: Zoom-in of the residual distribution of Fig. 3 with weighted residual
distribution overlayed in green. It can be seen that the heavy tails are signifi-
cantly reduced when using the robust weights.

as presented in Fig. 3 of two images after successful registra-
tion. Here also the distribution of the weighted residuals (wiri)
is shown in green. It can be seen that the weights reduce the tail
(large residuals) significantly.

3. Robust Symmetric Registration

As described above, the first step in constructing a robust si-
multaneous alignment of several images into an unbiased com-
mon space for a longitudinal study or for motion correction, is
to register two images symmetrically. To avoid any bias, the
resulting registration must be inverse consistent, i.e., the same
registration (inverse transformation) should be computed by the
algorithm if the time points are swapped.

3.1. Symmetric Setup

We first describe our symmetric gradient based image regis-
tration setup. Instead of understanding the registration as a local
shift of intensity values at specific locations from the source to
the target, we transform both images: the source IS half way to
the target IT and the target half way in the opposite direction
towards the source. The residual at each voxel is

r(~p) := IT (~x −
1
2
~d(~p)) − IS (~x +

1
2
~d(~p)) (11)

where I(~x) is the intensity at voxel location ~x, ~d = (d1 d2 d3)T is
the local displacement from source to target and depends on the
spatial parameters ~p. This setup is symmetric in the displace-
ment. We will explain later how an intensity scale parameter
can be incorporated.

When applying a small additive change ~q to the n parameters
in vector ~p we can write the result using a first order Taylor
approximation

r(~p + ~q) ≈ r(~p) + q1
∂r(~p)
∂p1

+ · · · + qn
∂r(~p)
∂pn

. (12)
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Since there is one such equation at each voxel, it is convenient
to write this in matrix form (a row for each voxel):

∂r1
∂p1

· · ·
∂r1
∂pn

...
. . .

∂rN
∂p1

∂rN
∂pn




q1
...

qn

 − ~r(~p + ~q) = ~r(~p) (13)

We will call the design matrix containing the partial derivatives
the A matrix. For N voxels and n parameters it is an N × n
matrix. In the following we will simply refer to the residuals
to be minimized as ~r := ~r(~p + ~q) and the observations at the
current location ~b := ~r(~p). Thus, equation (13) can be written
as A~q − ~r = ~b.

The goal is to find the parameter adjustments ~q that minimize∑
ρ(ri), which can be achieved with iteratively reweighted least

squares (cf. Section 2.3 Iteratively Reweighted Least Squares).
Choosing the Tukey’s biweight function ρ will prevent the error
from growing without bound. This will filter outlier voxels, and
at the end of the iterative process we obtain the robust parame-
ter estimate and the corresponding weights, which identify the
regions of disagreement.

What remains is to set up the design matrix A, i.e. to compute
the partial derivatives of ~r (Eq. 11):

∂~r
∂pi
= −

1
2

(DIT + DIS )
∂~d
∂pi

. (14)

Here DI = (I1 I2 I3) denotes a row vector containing the partial
derivatives of the image I in the three coordinate directions. The
vector ∂~d

∂pi
, the derivative of the displacement for each parameter

pi, will be described in the following section. This formulation
allows us to specify different transformation models (the ~d(~p)),
that can easily be exchanged.

Note that common symmetric registration methods (Frack-
owiak et al., 2003) need to double the number of equations to set
up both directions. They solve the forward and backward prob-
lems at the same time. In our approach this is not necessary, due
to the symmetric construction detailed above. However, a sym-
metric setup like this is not sufficient to guarantee symmetry.
The full algorithm needs to be kept symmetric to avoid treating
the source image differently from the target. Often, for exam-
ple, the source is resampled to the target in each iteration, which
introduces a bias. We describe below how to keep the algorithm
symmetric by mapping both images into a halfway space to en-
sure that they are treated in the same manner, with both images
being resampled into the symmetric coordinate system.

3.2. Transformation Model

This section describes some possible transformation mod-
els (for background see e.g. Frackowiak et al. (2003)). De-
pending on the application, different degrees of freedom (DOF)
are allowed. For within subject registration, 6 DOF are typi-
cally used to rigidly align the images (translation and rotation)
across different time points or within a session for the purpose
of motion correction and averaging of the individual scans. To
align images of different subjects to an atlas usually 12 DOF

transforms (affine registrations) or higher dimensional warps
are used. However, even in higher-dimensional approaches, a
linear registration is often computed for initial alignment. In
the next paragraphs we will describe how to implement a trans-
formation model with up to 12 DOF.

Generally the displacement ~d(~p) can be seen as a function of
the n dimensional model parameter vector ~p into R3 (for a fixed
location ~x). Here ~d is assumed to be linear in the parameters (or
it has to be linearized) and can be written as

~d(~p) = M~p (15)

where M can be seen as a 3 × n Jacobian matrix containing as
columns the partials ∂~d/∂pi, needed in the construction of the
design matrix A (see Eq. 14). In the following paragraphs we
will compute these Jacobians M for the affine (MA) and the rigid
(MRT ) cases. Note also that the displacement ~d is not equiva-
lent with the transformation T , but it is the amount of which a
location ~x is displaced, so T (~x) = ~x + ~d.

The affine 12 DOF displacement ~d12 is given by a translation
vector and a 3 × 3 matrix:

~d12 =

 p1
p2
p3

 +
 p4 p5 p6

p7 p8 p9
p10 p11 p12

 ~x (16)

=

 1 0 0 x1 x2 x3 0 0 0 0 0 0
0 1 0 0 0 0 x1 x2 x3 0 0 0
0 0 1 0 0 0 0 0 0 x1 x2 x3

︸                                                                     ︷︷                                                                     ︸
=:MA

~p

It is straightforward to construct a transformation matrix (in ho-
mogeneous coordinates) from these parameters:

T =


p4 + 1 p5 p6 p1

p7 p8 + 1 p9 p2
p10 p11 p12 + 1 p3
0 0 0 1

 (17)

For the rigid case, we can restrict this transform, to only allow
rotation and translation. However, for small rotation it is more
convenient to use the cross product to model the displacement
of a rotation around the vector (p4, p5, p6)T by its length in ra-
dians:

~d6 =

 p1
p2
p3

 +
 p4

p5
p6

 × ~x
=

 1 0 0 0 x3 −x2
0 1 0 −x3 0 x1
0 0 1 x2 −x1 0

︸                                    ︷︷                                    ︸
=:MRT

~p (18)

Note that this model is used to compute the values p4...p6 in
each step. It is not used to map the voxels to the new location
as small amounts of stretching could accumulate. To construct
the transformation, only the translation and the rotation around

the vector (p4, p5, p6)T by its length l :=
√

p2
4 + p2

5 + p2
6 are
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considered. With α := cos( l
2 ), β := sin( l

2 ) p4
l , γ := sin( l

2 ) p5
l and

δ := sin( l
2 ) p6

l (a unit quaternion) we obtain the transformation
matrix T :

(α2 + β2 − γ2 − δ2) 2(βγ − αδ) 2(βδ + αγ) p1
2(βγ + αδ) (α2 − β2 + γ2 − δ2) 2(γδ − αβ) p2
2(βδ − αγ) 2(γδ + αβ) (α2 − β2 − γ2 + δ2) p3

0 0 0 1


(19)

After specifying the displacement model, we can plug it into
equation (14) and obtain the matrix equation:

1
2

(DIS + DIT ) M︸                ︷︷                ︸
A

~q + ~r = IT − IS︸  ︷︷  ︸
~b

(20)

3.3. Intensity Scaling
Images can differ in both geometry and intensity in longitu-

dinal settings. If the assumption that a set of images share an
intensity scale is violated, many intensity based registration al-
gorithm can exhibit degraded accuracy. Often a pre-processing
stage such as histogram matching (Mishra et al., 1995; Nestares
and Heeger, 2000) is employed. An alternative to preprocess-
ing the images is to utilize a similarity measure that is insensi-
tive to scalings of intensity such as mutual information or en-
tropy. Due to difficulties when estimating geometric and in-
tensity changes simultaneously only a few exceptions such as
Woods et al. (1992, 1998),Ashburner and Friston (1997); Ash-
burner et al. (1997) and Periaswamy and Farid (2006) incorpo-
rate explicit models of intensity differences obviating the need
for complex intensity pre-processing.

We can easily incorporate a global intensity scale parameter
s into our model in a symmetric fashion. First the intensity
scale factor is applied to both source and target to adjust their
intensities to their geometric mean:

r(~p, s) =
1
√

s
IT (~x −

1
2
~d(~p)) −

√
sIS (~x +

1
2
~d(~p)) (21)

Recall that the additive spacial displacement was kept symmet-
ric by adding half the displacement to the source and half of
the negative displacement to the target, to move both towards
a common half way space. The intensity scale factor is multi-
plicative, so instead of simply multiplying the source image’s
intensities by s we scale them by

√
s and the target by 1/

√
s

to map both images to their intensity (geometric) mean. This
keeps the residual function symmetric with respect to the in-
tensity scaling factor in addition to the symmetric displacement
setup.

For the approximation, the corresponding partial derivative
is added in the Taylor approximation:

r(~p+~q, s+ t) ≈ r(~p, s)+q1
∂r(~p, s)
∂p1

+ · · ·+qn
∂r(~p, s)
∂pn

+ t
∂r(~p, s)
∂s

.

(22)
Thus, in order to incorporate intensity scaling, one simply ap-
pends s to the parameter vector ~p and attaches a column to ma-
trix A, containing the partial derivative of the vector ~r with re-
spect to s:

∂~r
∂s
= −

1
2

s−1(
1
√

s
DIT +

√
sDIS ). (23)

4. Registration Algorithm

The algorithm consists of the following steps:

1. Initialize Gaussian Pyramid: by subsampling and
smoothing the images.

2. Initialize Alignment: compute a coarse initial alignment
using moments at the highest resolution.

3. Loop Resolutions: iterate through pyramid (low to high
resolution).

4. Loop Iterations: on each resolution level iterate registra-
tion to obtain best parameter estimate. For each iteration
step:

(a) Symmetry: take the current optimal alignment, map
and resample both images into a half way space to
maintain symmetry.

(b) Robust Estimation: construct the overdetermined
system (Eq. 20) and solve it using iteratively
reweighted least squares to obtain a new estimate for
the parameters.

5. Termination: If the difference between the current and the
previous transform is greater than some tolerance, iterate
the process at this resolution level up to a maximal number
of iterations (Step 4), otherwise switch to the next higher
resolution (Step 3).

The above algorithm will be described in more detail in the
following sections.

4.1. Gaussian Pyramid (Step 1)

Since the Taylor based registration can only estimate small
displacements, it is necessary to employ a multiresolution ap-
proach (Roche et al., 1999; Hellier et al., 2001), together with
an initial alignment (see next section). As described in Nestares
and Heeger (2000) we construct a Gaussian pyramid, bisecting
each dimension on each level until the image size is approxi-
mately 163. We typically obtain about 5 resolution levels with
a standard adult field-of-view (FOV) for an MRI image that is
approximately 1mm isotropic (i.e. an FOV of 256mm). First a
standard Gaussian filter (5-tab cubic B-Spline approximation)

[0.0625 0.25 0.375 0.25 0.0625] (24)

is applied in each direction of the image, which is then subsam-
pled to the lower resolution. These pyramids (source and target)
need to be constructed only once for the entire process.

4.2. Initial Alignment (Step 2)

In order to speed up the registration and increase its capture
range, an initial coarse alignment is constructed using moments.
Geometric moments have proven to be an efficient tool for im-
age analysis (Del Bimbo, 1999). For a grayscale image with
pixel intensities I(x1, x2, x3), the raw image moments Mi jk are
calculated by

Mi jk :=
∑

x1

∑
x2

∑
x3

(x1)i (x2) j (x3)k I(x1, x2, x3), (25)
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where i, j, k are the exponents of the coordinates x1, x2, x3 re-
spectively (taking the values 0 or 1 in the following equation).
The centroid of an image can be derived from the raw moments:

(x̄1, x̄2, x̄3)T :=
(

M100

M000
,

M010

M000
,

M001

M000

)T

. (26)

We compute the translation needed to align the centroids and
use it by default as an initial transformation to ensure over-
lapping images when starting the robust registration algorithm.
Furthermore, it is possible to use central moments as defined
below to compute an initial rotational alignment. For full head
images with possibly different cropping planes, such a rota-
tional pre-alignment can be very inaccurate and should there-
fore only be used when aligning skull stripped images. Central
moments are defined translation invariant by using the centroid
(Eq. 26):

µi jk :=
∑

x1

∑
x2

∑
x3

(x1 − x̄1)i (x2 − x̄2) j (x3 − x̄3)k I(x1, x2, x3)

(27)
The covariance matrix of the image I can now be defined using
µ′i jk := µi jk/µ000:

cov[I] =

 µ′200 µ′110 µ′101
µ′110 µ′020 µ′011
µ′101 µ′011 µ′002

 . (28)

The eigenvectors of the covariance matrix correspond to the
three principal axes of the image intensities (ordered according
to the corresponding eigenvalues). These axes are then aligned
for two images. Care needs to be taken to keep the correct ori-
entation. This is achieved by flipping the first eigenvector if
the system has left-handed orientation. Even if both systems
are right-handed, it can still happen that two of the axes are
pointing in the opposite direction, which can be detected and
fixed by projecting each axis onto its corresponding axis in the
other image and flipping it if necessary. If the angle between
the corresponding axes is too large, the correct orientation can-
not be determined without additional information and the initial
rotational alignment is not performed. Note that initial moment
based orientation alignment was never necessary and therefore
not used in any of our tests, since head MRI images are usually
oriented similarly.

4.3. Loops (Step 3)
There are three nested loops in the registration algorithm: the

different resolutions of the pyramid (step 3), several iterations
on each level (remapping the images (step 4), and finally the
iteratively reweighted least squares algorithm for the robust pa-
rameter estimation (inside step 4(b), see Section 2.3). Note,
when switching form a lower to a higher resolution in step 3,
the translational parameters need to be adjusted (scaled by the
factor 2) when given in voxel coordinates.

4.4. Registration (Step 4)
On each resolution level there are several iterations of the

resampling and robust parameter estimation as explained next.

4.4.1. Half Way Space (Step 4a)
The registration model (Eq. 11) is designed to maintain sym-

metry in the algorithm, however we must also ensure that all
steps are performed similarly for both images. Therefore it is
not sufficient to map the source to the target in each iteration
and re-estimate the new parameters. In such a setup only the
source would be resampled at (or close to) the target location
while the target would not go through the resampling process.
In order to avoid this asymmetry, which can introduce biases
due to the arbitrary specification of source and target, we pro-
pose to resample both images to the half way space in each
iteration step.

For a given transformation T from the source to the target the
half way maps are constructed by approximating the square root
of the matrix T (here T is again assumed to be a 4× 4 matrix in
homogeneous coordinates). For a positive definite matrix T (we
don’t allow reflections and projections) there exists exactly one
positive definite matrix T

1
2 with T = T

1
2 T

1
2 . For its computa-

tion we use the Denman-Beavers square root iteration (Denman
and Beavers, 1976; Cheng et al., 2001): Let Y0 = T and Z0 = I,
where I is the identity matrix. The iteration is defined by

Yk+1 =
1
2 (Yk + Z−1

k ),

Zk+1 =
1
2 (Zk + Y−1

k ). (29)

The matrix Yk converges quadratically to the square root T
1
2 ,

while Zk converges to its inverse, T−
1
2 . Once T

1
2 has been ap-

proximated, the source image is mapped to T
1
2 and the target

to T
1
2 T−1 (to ensure both get resampled at the same location).

For the resampling process tri-linear interpolation is used, al-
though other interpolation algorithms can easily be employed.
Note that to maintain symmetry the square root iteration should
only be stopped when the largest element of abs(Y2

k −T ) is suf-
ficiently small.

4.4.2. Robust Estimation (Step 4b)
To set up the robust estimation problem (Eq. 20), the partial

derivatives and a smoothed version of both images need to be
computed. Smoothing is used to prevent the algorithm from
being trapped in a local minimum. For smoothing we apply a
Gaussian kernel in each image direction (Nestares and Heeger,
2000):

[0.03504 0.24878 0.43234 0.24878 0.03504] (30)

The smoothed derivatives can be computed by applying

[0.10689 0.28461 0.00000 0.28461 0.10689] (31)

in the direction of the derivative and the smoothing kernel in
the two other directions. Once the image derivatives DI are
computed, the matrix A and vector ~b can be constructed (see
Eq. 20). If the matrix gets too large, it is often sufficient to
subsample the image at the highest resolution and only select
every second voxel. As the derivatives and intensity informa-
tion are selected from the high resolutional image the result will
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still be more accurate than stopping at the previous lower res-
olution level in the Gaussian pyramid. For further improve-
ment stochastic sampling algorithms can be employed to avoid
aliasing. Subsampling specific regions more densely than oth-
ers (e.g. depending on gradients, edges or the outlier weights) is
also likely to improve accuracy. Our tests, however, show very
accurate results even with the simple subsampling algorithm.

Once the system has been constructed, the iteratively
reweighted least squares algorithm (Section 2.3) is employed to
compute the new parameters and weights. For this reason, the
saturation parameter c of the Tukey’s biweight functions must
be specified. In Nestares and Heeger (2000) a constant satura-
tion value c = 4.685 is recommended (suggested for Gaussian
noise in Holland and Welsch (1977)). However, a fixed value
cannot adjust well to different image contrast types and SNR
levels, such as non-linear deformations or larger intensity differ-
ences. In these cases it can happen that the registration fails as
too many voxels are considered outliers. Therefore in order to
reduce the number of detected outliers particularly in the brain,
it is necessary to find a less sensitive (i.e. larger) value in these
cases. The user can always adjust this parameter according to
the specific image situation. For full head scans, however, we
developed a method that automatically estimates the sensitivity
parameter. It also works remarkably well in brain-only regis-
trations. For full head images, a global limit on the number of
outlier voxels will not be a good measure, as large outlier re-
gions especially at the skull, jaw and neck should be permitted.
The following outlier measure uses a Gaussian to weigh vox-
els at the center of the image more strongly than voxels further
away (see also Figure 5):

W :=
∑

(1 − wi) e−
d2
i

2σ2∑
e−

d2
i

2σ2

, with σ =
max(width,height,depth)

6

(32)
where di is the distance of voxel i to the center. W is zero iff
(if and only if) all weights wi are one (meaning no outliers). A
large W means that many voxels in the center of the image are
labeled outlier. In that case the saturation is automatically in-
cremented and W recomputed until W < Wthresh. All of this can
be computed quickly on a lower resolution level (we choose
the third highest level, i.e. for a 2563 image this is 643). The
threshold Wthresh will be discussed and determined in Section
5.4 Parameter Estimation. Note that in situations with signifi-
cant outliers in the center, a global unweighted threshold can be
used instead or the sensitivity parameter can be adjusted manu-
ally.

4.5. Termination (Step 5)

In order to measure how much a new parameter estimate dif-
fers from the last iteration, the root mean square (RMS) de-
viation of the two corresponding transformations is computed.
This measure will also be used to assess the quality of a reg-
istration when compared to some ground truth. The RMS de-
viation measures the average difference of voxel displacements
inside a spherical volume for two given affine transformations

Figure 5: Gaussian filter at the center
(
σ =

max(width,height,depth)
6

)
.

(M1,~t1) and (M2,~t2), where M1,M2 are two 3 × 3 linear trans-
formation matrices and t1, t2 the corresponding 3×1 translation
vectors. The RMS error for a spherical volume with radius r is
then given by:

ERMS =

√
1
5

r2 tr[(M2 − M1)T (M2 − M1)] + (~t2 − ~t1)T (~t2 − ~t1) ,

(33)
where tr is the trace (see Jenkinson (1999) for the derivation).
An average displacement error is used as a quality measure for a
transformation instead of, for example, the maximum displace-
ment because it depends on all voxels contained in the sphere
instead of possibly only a single voxel. The misalignment of
a single voxel is not very important if the rest of the image is
aligned accurately. While a translation has an equally strong ef-
fect everywhere, a rotation, for example, shifts voxels different
distances depending on the distance to the rotation center. For
a translation of 0.1mm (and 1mm3 voxels) both maximum dis-
placement and average displacement are the same ERMS = 0.1.
Such a displacement can easily be seen on the screen when
switching between the images. Even ERMS of 0.05 and below
can be noticed when magnifying the images. These displace-
ments, however, are too small to visualize in a printed version
of the image (e.g. checkerboard).

In this work the RMS error is measured on the transforma-
tions defined in RAS (right, anterior, superior) coordinates with
the origin located approximately at the center of the image. The
radius of the spherical volume is set to r = 100 which corre-
sponds to 100mm, enough to include the full brain. The iter-
ations of the parameter estimation are usually terminated once
ERMS < 0.01 i.e. the average displacement consecutive esti-
mates are below 0.01mm, which is very restrictive. To avoid
long runtimes in ill conditioned cases, a maximum number of
iterations can also be specified by the user (the default is 5).

5. Results

This section presents results quantifying the accuracy and ro-
bustness of the robust registration in comparison to other com-
monly used methods. As mentioned above, the robust registra-
tion is capable of ignoring outlier regions. This can be verified
when checking the weights during a successful registration, as
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Figure 6: The red/yellow regions (bottom row) are detected as outlier regions
during the registraion procedure of this Multiecho MPRAGE test-retest data.
Their influence is automatically reduced. It can be seen that the detected out-
liers agree with the non-rigid differences after successful registration (top row)
located mainly in the neck, eye, scalp and jaw/tongue region; see also Fig. 1.

shown in Figure 6. The top images show the (enhanced) dif-
ferences between the target and registered source. The regions
that contain the strongest differences are correctly detected as
outliers as can be seen in Figure 6 (bottom), where the weights
are overlayed (red/yellow regions). Note that the weights range
from 0 to 1 and are blurry (because they are computed on
smoothed images), so they can blur in from neighboring slices.

Figure 7 (left) is an example of an image that is misaligned
using FLIRT with the mutual information similarity function.
The visible edges in the brain regions indicate an alignment er-
ror. Figure 7 (right) shows the differences when using the robust
registration, where clearly less strong edges are visible. The re-
maining residuals are due to resampling and noise. Figure 7
bottom shows a magnification of the target (red) and registered
source (green) on top of each other. The red and green edges
(left) at the ventricle and temporal lobe indicate misalignment
while yellow regions are accurately aligned (right). The differ-
ence between the two transforms here is ERMS = 0.88, almost
one voxel on average.

In the following sections we analyze the performance of dif-
ferent registration tools. We use the RMS deviation of two
transformations as described in Section 4.5 (Termination) to
quantify the distance (the error) of a computed transformation
with respect to some ground truth transformation. For the fol-
lowing tests we use a set of 14 healthy subjects each with two
scans 14 days apart. The images are MPRAGE T1 weighted
full head scans (on Siemens Sonata 1.5T) and are resampled to
2563 voxels each with 1mm side length (original dimensions
256 × 256 × 128 with 1mm ×1mm ×1.33mm voxels).

5.1. Inverse Consistency

Since this algorithm is intended to compute inverse consis-
tent registrations, we need to verify experimentally that the fi-
nal transforms are exactly inverses of each other when switch-
ing source and target. For each subject we register the image

Figure 7: Difference after alignment. Left: FLIRT MI (the visible structures in
the brain indicate misalignment). Right: Robust method (accurate alignment,
residual differences due to noise and resampling). The top shows the differ-
ence images and the bottom a zoom-in into the aligned target (red) and source
(green). A good alignment should be yellow (right) while the inaccurate regis-
tration shows misaligned red and green edges (left).
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Figure 8: Comparison of inverse consistency using different methods: FLIRT
LS: least squares , CR: correlation ratio, MI: mutual information, SPM, LS
(our implementation with least squares instead of robust error function), Robust
registration, Robust-I (+intensity scaling) and Robust-I-SS (subsampling on the
highest resolution). The white circles represent the individual registrations.
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Figure 9: Close-ups of test images: original (left) with Gaussian noise σ = 10
(middle) and with outlier boxes (right).

from time point 2 to the time point 1 and vice versa while com-
paring the obtained transforms of several common registration
algorithms. We compare the robust registration (with differ-
ent parameter settings) with the FLIRT registrations (Jenkinson
et al., 2002) from the FSL suite (Smith et al., 2004) using dif-
ferent cost functions: standard least squares [FLIRT-LS], corre-
lation ratio [FLIRT-CR], mutual information [FLIRT-MI]. Fur-
thermore, we compare with a registration tool from the SPM
software (Ashburner and Friston, 1999) based on Collignon
et al. (1995) [SPM]. The robust variants are: [Robust] robust
rigid registration (no intensity scale), [Robust-I] with intensity
scaling, and [Robust-I-SS] with additional subsampling at the
highest resolution. We also include our implementation with
standard least squares [LS] instead of the robust Tukey’s bi-
weight error function to see the effect of the robust estimation
with no other differences in the algorithm. In Figure 8 the RMS
deviation of the forward and inverse backward transforms are
computed and compared for different image types as used in the
FreeSurfer software package: full head scans (orig), intensity
normalized images (T1) and normalized skull stripped images
(norm).

The FLIRT registrations perform similarly. The higher mean
in the mutual information method on the orig images is due to
a single outlier (ERMS = 2.75). It can be seen that the robust
registration methods are extremely symmetric, even with inten-
sity scaling switched on, adding another degree of freedom and
a higher chance for numerical instabilities. Also our non-robust
method [LS] with the standard least squares error function is
perfectly symmetric in all cases. This test, however, does not
tell us anything about the accuracy of the registration.

5.2. Tests Using Synthetic Data

In this section we present results using images that were
transformed, intensity scaled and otherwise manipulated with
known transformations, which then can be used as ground truth.
We compare how well several registration algorithms perform
on the same test set of the 14 MPRAGE T1 weighted full head
scans (Siemens Sonata 1.5T) of the same healthy subjects. The
registration methods are the same as in the previous section
(FLIRT, SPM and robust registration).

A random rigid transformation (rotation, translation) was
computed for each image. The parameters were chosen in a
way that reflects possible (large) head movements in a scanner:
50mm translation in a random direction together with a random

rotation of 25◦ around an arbitrary axis with the origin at the
center of the image. The maximum displacement of a corner of
theses image was between 130mm and 140mm. The parame-
ters were chosen, so that all methods can find approximate solu-
tions. For larger transformations [SPM] was no longer capable
of recovering the correct registrations at all, while the robust
methods performed perfectly (not shown) in tests up to 100mm
translation and 40◦ rotation. These transformations move the
images apart so that there is almost no overlap, furthermore
parts of the face, skull, neck and jaw can be cropped because
they are mapped outside the field-of-view. The robust approach
can deal well with this kind of partial matching. Moreover, we
believe that, due to the multiresolution algorithm and the initial
moment based alignment, even larger transformations will be
recovered accurately.

For the synthetic registration comparison, the transform that
represents half the random translation and rotation is used to
map and resample each image at the target location and the in-
verse is applied to map and resample each image at the source
location. This ensures that both images (source and target) will
be resampled and do not move outside the field of view as eas-
ily. An accurate registration from source to target needs to be
close to the original random transform. The accuracy is mea-
sured using the RMS deviation (see Section 4.5) of the ground
truth and the computed transformation matrix. Four different
tests were performed. In all cases random rigid motion was
applied (as described above):

1. Only-Motion: only random rigid motion.
2. Noise: significant Gaussian noise was added with σ = 10

(Figure 9 middle).
3. Outlier boxes: 80 boxes (each box 303 voxel) were created

and copied from a random location to another random lo-
cation within the same image, with 40 boxes each in source
and target (Figure 9 right).

4. Intensity: global intensity scaling (±5%) was performed.

The results of this experiment are given in Figure 10. It can
be seen that the robust version outperforms the three different
FLIRT similarity functions in all tests. [SPM] yields similar ac-
curacy, but fails completely for larger transforms (not shown).
The robust registration shows almost no influence of the out-
lier boxes since these are accurately detected as such. There is
only little influence of noise. However, when the global inten-
sity scale is different in the two images, the robust registration
methods needs 7 DOF (one additional intensity scale parameter:
[Robust-I]) to maintain accuracy, because it strongly depends
on similar intensity levels. This underlines the importance of
incorporating automatic intensity scaling into the robust regis-
tration method. Subsampling on the highest resolution in the ro-
bust registration [Robust-I-SS] leads to a significant reduction
in memory and run time, but still yields the same registration
accuracy in these tests. The simple non-robust implementation
LS performs poorly in most cases.

It should be noted that the FLIRT methods produce a few in-
dividual registrations with low accuracy when outliers or noise
are present (as can be seen by checking the scatter data, the
small circles in Figure 10, some are too large and not shown).
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Figure 10: Accuracy of different methods (see Fig.8). The four different tests
are: random rigid motion, additional Gaussian noise (σ = 10mm), 80 boxes of
outlier data and intensity scaling.

The SPM method on the other hand produces quite accurate re-
sults in most test cases. However, as mentioned above it fails
completely for larger transformations.

5.3. Tests Using Real Data

In contrast to the simulations with available ground truth
transformations we do not know the correct registration in ad-
vance in typical registration paradigms. Therefore we need to
establish a different performance metric. This can be achieved
by registering the skull stripped and intensity normalized im-
ages of a test-retest study (two time points) with different regis-
tration methods. These registrations are highly accurate as the
images contain only brains of healthy normals and only small
changes in the brain are involved (e.g. noise etc.). In these well
behaved situations the registration of these brain images com-
puted by the different algorithms deviate from each other only
by small amounts. The goal here is to find registrations of the
corresponding full head images that are as close as possible to
the brain-only, intensity normalized registrations.

The group chosen for this test is the same as described above.
This test will be more noisy as the ’ground truth’ is already de-
fined inaccurately. Figure 11 (left) shows the distances of all
other methods to the SPM registration of the skull stripped nor-
malized image (norm). It can be seen that compared to the full
head registrations, the norm registrations are on a similar low
level for all methods (SPM has of course zero distance to itself).
SPM has been chosen to construct the ground truth registra-
tion of the norm images, as it performed more accurately than
the FLIRT methods in the previous tests. We did not choose
a robust registration to establish the ground truth to not favor
our method. However, we tested establishing the ’ground truth’
with any other method which leads to very similar results and
almost exactly the same plots.
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Figure 11: Accuracy of different methods (see Fig.8) with respect to SPM (on
the norm images).

The results on the full head (orig) image (Figure 11 middle)
and intensity normalized full head (T1) image (Figure 11 right)
evidence behavior that is similar to the previous tests. SPM per-
forms (here only slightly) better than the FLIRT methods, while
the robust registration yields the most accurate results. As ex-
pected for the orig images intensity scaling [Robust-I] improves
the registrations further, while for the normalized T1 images it
is not necessary. Again subsampling [Robust-I-SS] on the high-
est resolution reaches the same accuracy, indicating that the ex-
pensive iterations on the highest resolution level can be avoided.

5.4. Parameter Estimation

As described in Section 4.4.2 a fixed saturation level c cannot
be recommended for all image types. The value c = 4.685 from
Nestares and Heeger (2000) will lead to erroneous registrations
in many common settings. Figure 12 (top) shows the accuracy
of each robust registration of the orig images plotted vs. the se-
lected saturation level. For some subjects the optimal registra-
tion is reached at c ≈ 6 while other need a higher value c ≈ 15.
For the normalized T1 images or for [Robust-I] (with intensity
scaling enabled) the results look similar (not shown), however
with individual minima spread between c = 4 and c = 9. When
using a fixed saturation level for all registrations, c ≈ 14 is op-
timal for [Robust] with an average RMS error of slightly below
0.3 and c = 8.5 is optimal for [Robust-I]. Even with a fixed
saturation, both robust methods are on average better than the
other non-robust registration methods (cf. Figure 12 bottom).

For [Robust] without intensity scaling, a relative high satu-
ration value (c = 14) is particularly necessary to compensate
for the differences in image intensity. Lower values might la-
bel too many voxels outlier due to the intensity differences or
non-linearities, resulting in misaligned images (see Figure 13
for an example). Instead of manually inspecting the outliers
and registrations while determining an optimal saturation set-
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Figure 12: Top: Accuracy of [Robust] for each individual subject. Bottom:
Mean accuracy of the methods, where [Robust] and [Robust-I] depend on the
saturation level (fixed across all subjects). It can be seen (bottom) that [Robust]
reaches its minimal average registration error at the fixed saturation level of
c = 14 and [Robust-I] at c = 8.5. For most fixed saturation levels, both methods
perform better on average than FLIRT or SPM (note, the averages of [FLIRT-
LS] and [FLIRT-CR] almost coincide, compare with Fig. 11 middle).

Figure 13: Top: Fixed low saturation of c = 4.685 (high outlier sensitivity) in
a registration with intensity differences and non-linearities results in too many
outlier and consequently in misalignment. Bottom: Automatic sensitivity esti-
mation adjusts to a higher saturation value (low outlier sensitivity) to register
the images successfully. The detected outlier regions are labeled red/yellow.
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Figure 14: Registration accuracy for each subject depending on center fo-
cused weight W (Robust top, Robust-I bottom). Red horizontal line: averaging
best registration per subject. Black curve: average performance at specific W.
Dashed curves: individual subject’s results.

ting per image, we introduce the center focused weight mea-
sure W (Eq. 32) for full head images to indicate when too many
outliers are detected in brain regions and to adjust the sensitiv-
ity accordingly. Figure 13 (bottom row) shows the same image
registration, where the automatic parameter estimation results
in less detected outliers and a successful alignment.

We will now determine an optimal W for the automatic sat-
uration estimation. Figure 14 presents scatter plots of registra-
tion accuracies [Robust] and [Robust-I] on the full head (orig)
images here plotted versus W. The horizontal red line shows
the average minimum error when choosing the individual satu-
ration that leads to the best registration for each subject (with
respect to the ground truth). The automatic saturation estima-
tion can almost reach this optimum by fixing the center focused
weight measure W around 0.2 (see the black curve showing the
average of W between 0.05 and 0.3). Additionally, W is quite
robust since the average (black dashed curve) is relatively flat.
Ensuring a W around 0.2 for the tested image types in the auto-
matic saturation estimation leads to registrations that are almost
as accurate as when taking the optimal result per subject (which
is of course not know a priori).
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Figure 15: Error of motion correction task in brain region for different registration methods Left: sum of squared errors comparison. Right: edge count of average
image. Both plots show the signed difference to Robust-I.

5.5. Application: Motion Correction
Frequently several images of a given scan type are acquired

within a session and averaged in order to increase SNR. These
images are not perfectly aligned due to small head movements
in the scanner (for some groups of patients there can be even
large differences in head location, due to uncontrolled motion)
and need to be registered first. Since not only noise but other
differences such as jaw movement or motion artifacts are preva-
lent in these images, a robust registration method should be op-
timally suited to align the images while discounting these out-
lier regions. It can be expected that except for noise, brain tissue
and other rigid parts of the head will not contain any significant
differences (except rigid location changes). A misalignment of
the within-session scans will of course affect the average image
negatively and can reduce the accuracy of results generated by
downstream processes. Therefore highly accurate registrations
for motion correction are the first step, for example, towards de-
tecting subtle morphometric differences associated with disease
processes or therapeutic intervention.

To test the robust registration for this type of within-session
motion correction, the two scans of the first session in the longi-
tudinal data set presented above were selected. The second scan
was registered to the first with the different registration meth-
ods. It was then resampled at the target location (first scan)
and an average image was created. Since these within-session
scans should show no change in brain anatomy, it can be ex-
pected that the difference between scan 1 and aligned scan 2 in
brain regions will be very small and mainly be due to noise (and
of course scan 2 will be smoother due to resampling). There-
fore a larger difference in the brain-region between the regis-
tered images implies misalignment, most likely due to image
differences elsewhere (e.g. jaw, neck and eyes) or less likely due
to non-linear differences between the two scans. The gradient
non-linearities will badly influence all rigid registrations sim-
ilarly, while possible non-brain outlier regions will influence
the employed methods differently. Therefore we will evaluate

the performance of full head registration only within the brain
mask.2

We first quantify the registration error and compute the sum
of squared errors (SSE) of the intensity values in scan I1 and
aligned/resampled scan Ĩ2:

S S E =
∑
i∈B

(I1(i) − Ĩ2(i))2 (34)

where the sum is taken over all brain voxels B. The brain masks
to specify brain regions were created automatically for each
subject with the FreeSufer software package and visually in-
spected to ensure accuracy.

The SSE measure quantifies the intensity differences of the
two images after alignment within the brain. For a perfect re-
gistration these differences should be small as they only mea-
sure noise, non-linearities and global intensity scaling (all of
these should be small as the two images are from the same
scan session). Figure 15 (left) shows the signed difference of
SSE with respect to the result of the method [Robust-I]. The
robust methods perform best on average, while [FLIRT-LS],
[FLIRT-CR] and [LS] yield a better results (lower SSE) only in
one single instance (white circles with negative value). To test
the significance of these results, we applied a Wilcoxon signed
rank test (Wilcoxon , 1945) for each algorithm with respect to
[Robust-I] to test if the median of the pairwise differences is
equal to zero (null hypothesis). This is similar to the t-test on
the pairwise differences, without the assumption of normally

2In some applications it might be better to compute registrations on skull
stripped brains directly. However automatic skull stripping is a complex proce-
dure, and frequently needs the user to verify all slices manually. Furthermore,
in some situations it makes sense to keep the skull, for example, when regis-
tering to a Talairach space with skull to estimate intracranial content, which
depends on head size rather than brain size. Finally even skull stripped images
can contain significant differences, for example in longitudinal data or simply
because different bits of non-brain are included, so that the robust registration
is still the best choice.
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distributed data. We found that all non-robust methods show
significant differences from [Robust-I] at a p < 0.001 while the
null hypothesis cannot be rejected within the robust methods,
as expected, since their performance is basically the same.

In order to test if differences can be detected in the result-
ing average images, we count the number of edges. Correctly
aligned images should minimize the number of edges since all
edges will be aligned, while misalignment increases the edge
count. The edges were detected by scanning the x component
of the gradient (using the Sobel filter) in the x directions and
counting local maxima above a threshold of 5. Figure 15 (right)
shows that the misalignment increases edge count on average
when compared to [Robust-I]. However, due to the large vari-
ance the FLIRT results are not significant. [SPM] is signifi-
cantly different at level p = 0.058 and [LS] at the p < 0.001
significance level in the Wilcoxon signed rank test.

6. Conclusion

In this work a robust registration method based on Nestares
and Heeger (2000) is presented, with additional properties such
as initial coarse alignment, inverse consistency, sensitivity pa-
rameter estimation and global intensity scaling. Automatic in-
tensity scaling is necessary for the method to function when
global intensity differences exist. Similarly the automatic esti-
mation of the saturation parameter avoids misalignment in spe-
cific image situations where a fixed value potentially ignores
too many voxels.

The presented method outperforms commonly used state-of-
the-art registration tools in several tests, and produces results
that are optimally suited for motion correction or longitudinal
studies, where images are taken at different points in time. Lo-
cal differences in these images can be very large due to move-
ment or true anatomical change. These differences will in-
fluence the registration result, if a statistically non-robust ap-
proach is employed. In contrast, the robust approach presented
here maintains high accuracy and robustness in the presence of
noise, outlier regions and intensity differences.

The symmetric registration model together with the ’half
way’ space resampling ensure inverse consistency. If an un-
biased average of two images is needed, it is easily possible
to resample both, target and source, at the ’half way’ loca-
tion and perform the averaging in this coordinate system. Fur-
thermore, these registrations can be employed to initialize non-
linear warps without introducing a bias. Robust registration has
been successfully applied in several registration tasks in our lab,
including longitudinal processing and motion correction. The
software is freely available within the FreeSurfer package as
the mri robust register tool.

Future research will extend the presented registration to more
than two images and incorporate these algorithms into a lon-
gitudinal processing stream, where more than two time points
may be involved. In those settings instead of simply register-
ing all images to the first time point, it is of interest to create
an unbiased template image and simultaneously align all input
images in order to transfer information at a specific spatial loca-
tion across time. Similar to the idea in (Avants and Gee, 2004) it

is possible to estimate the unbiased (intrinsic) mean image and
the corresponding transforms iteratively based on the pairwise
registration algorithm described in this paper.
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