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Atlas Renormalization for Improved Brain MR Image
Segmentation Across Scanner Platforms

Xiao Han and Bruce Fischl*

Abstract—Atlas-based approaches have demonstrated the
ability to automatically identify detailed brain structures from
3-D magnetic resonance (MR) brain images. Unfortunately, the
accuracy of this type of method often degrades when processing
data acquired on a different scanner platform or pulse sequence
than the data used for the atlas training. In this paper, we improve
the performance of an atlas-based whole brain segmentation
method by introducing an intensity renormalization procedure
that automatically adjusts the prior atlas intensity model to
new input data. Validation using manually labeled test datasets
has shown that the new procedure improves the segmentation
accuracy (as measured by the Dice coefficient) by 10% or more
for several structures including hippocampus, amygdala, caudate,
and pallidum. The results verify that this new procedure reduces
the sensitivity of the whole brain segmentation method to changes
in scanner platforms and improves its accuracy and robustness,
which can thus facilitate multicenter or multisite neuroanatomical
imaging studies.

Index Terms—Brain atlas, brain imaging, computational neu-
roanatomy, magnetic resonance imaging (MRI) segmentation.

I. INTRODUCTION

THE identification and delineation of brain structures from
magnetic resonance imaging (MR) brain images is an im-

portant task and has many applications in neuroscience, such as
the study of brain development, the mapping of functional acti-
vation onto brain anatomy, and the analysis of neuroanatomical
variability among normal brains. Brain structure segmentation
and morphometric analysis is also helpful in clinical diagnosis
of neurodegenerative and psychiatric disorders, treatment eval-
uation, and surgical planning.

Advances in MR imaging technology have allowed for
greater precision in the assessment of morphometric properties
of brain structures in vivo; however, automated segmentation
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Fig. 1. Automated whole brain segmentation; label the brain into 37 structures.

and delineation of detailed brain structures remains a diffi-
cult task. The majority of existing efforts in MR brain image
segmentation are devoted to the extraction and surface-based
analysis of the brain cortex (cf., [1]–[7] and references therein),
while work in the segmentation of noncortical structures is
somewhat less common [8]–[13] and they are often tailored
towards a small number of structures such as lateral ventricles,
caudate, thalamus, and/or hippocampus.

In [12], Fischl et al. proposed an atlas-based segmentation
method that automatically assigns labels to 37 subcortical
structures (cf., Fig. 1), including left and right caudate,
putamen, pallidum, thalamus, lateral ventricles, hippocampus,
and amygdala. Unlike many other atlas-based approaches, the
probabilistic atlas employed by the method maintains struc-
ture-specific intensity models at every atlas location in addition
to the usual spatial prior for each structure. Compiling statistics
separately for each subcortical structure at every atlas location
prevents the broadening of underlying intensity distributions
that would otherwise occur and thus allows for more accurate
atlas registration and brain structure segmentation. The whole
brain segmentation method was later extended to include a
forward model of the MR image formation and to incorporate a
nonlinear atlas registration scheme to improve accuracy in the
atlas registration [14].

The reported method has been shown to provide segmenta-
tion accuracy comparable to manual labeling [12], [14]. Unfor-
tunately, the performance often degrades when processing data
acquired with a scanner platform and/or pulse sequence that dif-
fers from the training data used for the atlas construction, due to
changes in the underlying image contrast and hence mismatch
between the prior intensity model and the input image. This lim-
itation hinders the application of the method in multicenter or
multisite neuroanatomical studies that typically involve data ac-
quired from multiple platforms. The same difficulty is faced by
other atlas-based methods as well. The method of [14] partially
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addressed the problem by formulating the atlas model in the
space of intrinsic tissue parameters, which, however, requires
steady-state MR sequences and requires multispectral training
data for tissue parameter estimation.

In this paper, we propose a procedure to automatically ad-
just the intensity model of an existing atlas to new image data,
which results in improved accuracy and robustness of the overall
method. This atlas renormalization procedure applies a multi-
linear atlas-image registration and a histogram matching step to
update the class-conditional densities for each structure repre-
sented in the atlas (e.g., caudate, putamen, hippocampus, and
etc.). The histogram matching step shares some similarity with
existing methods on histogram-based MR image intensity nor-
malization or standardization [15]–[19], but there are important
differences between them in terms of the overall objective and
methodology. First, the present work aims to develop a robust
whole brain segmentation method and the normalization is per-
formed on the model parameters of a given probabilistic brain
atlas. On the other hand, the intensity standardization methods
were proposed to normalize the intensity scales across mul-
tiple images, which mainly serve as a preprocessing technique
that can facilitate visualization and subsequent tissue segmen-
tation. Their application in detailed brain structure segmenta-
tion, however, remains to be investigated. Second, the intensity
standardization methods adopted a global piecewise linear in-
tensity mapping function estimated using global histogram fea-
tures, which may not be sufficient to address nonlinear image
contrast changes among individual structures across different
imaging sequences. In this paper, we propose to correct the prior
intensity models for each individual structure separately and a
structure-wise atlas-image registration is further developed for
better histogram estimation.

The work presented here also shares some common aspects
with a class of brain segmentation methods based on the ex-
pectation-maximization framework (cf., [20], [21], and refer-
ences therein) where the model parameters are iteratively up-
dated during the tissue classification process. These methods
typically focus on simultaneous bias field correction and tissue
segmentation of gray matter, white matter, and CSF, and as-
sume a spatially stationary intensity distribution for each tissue
class. In general, this reduces segmentation accuracy as different
parts of heterogeneous structures such as the thalamus and hip-
pocampus have significantly different intensity distributions, re-
sulting in intensity histograms across space that are not well
approximated by Gaussians. In contrast, the framework of [12]
and [14] allows the intensity model to vary for each individual
structure and at each atlas location, allowing the modeling of in-
ternal structure such as the perforant path, a white matter bundle
that traverses the hippocampus. Another set of related work is
the recent development of the polyaffine registration framework
by Arsigny et al. [22], which may provide more robust struc-
ture-wise linear registration than the multilinear approach de-
signed in the current work, as it can guarantee invertibility of
the composite transform.

In the following, we first summarize the whole brain segmen-
tation method and then describe the intensity renormalization
procedure. Finally, results are presented to demonstrate the im-
proved robustness and accuracy of the new method. We note that

only T1-weighted image data and a single-channel atlas are used
in the current work. Validation of the method on multichannel
or multimodality brain segmentation (where the atlas intensity
renormalization can be performed for each channel separately)
is ongoing and the results will be reported in the future. The bi-
naries for the method and the brain atlas used are available to the
research community through the recent release of FreeSurfer at
http://www.surfer.nmr.mgh.harvard.edu/.

II. ATLAS-BASED WHOLE BRAIN SEGMENTATION

In this section, we summarize the overall principle of the
whole brain segmentation method proposed in [12] and [14].
The same framework is adopted in the current work, but with an
additional step for automatically correcting the prior atlas inten-
sity model to better fit new input data.

In [12] and [14], the problem of automatically labeling brain
structures is phrased within the framework of Bayesian estima-
tion theory, which allows for explicit incorporation of prior in-
formation about the spatial distribution of individual structures
and their expected intensity appearance. In particular, both the
priors on the anatomical labels and the conditional prob-
ability of observing the image given the classification
are expressed within an atlas space, allowing them to vary as a
function of position within the brain. In addition, the segmen-
tation itself is modeled as a nonstationary anisotropic Markov
random field (MRF). Due to the unknown transformation be-
forehand between the atlas space and the image to be segmented,
the problem can be formally written as a maximization of the
joint a posteriori probability of both the segmentation and
the atlas function (i.e., the registration between the atlas and
a given image)

(1)

In the above equation, the term encodes the rela-
tionship between the class label at each voxel location over the
image domain and the predicted image intensity

(2)

where and are the mean vector and covari-
ance matrix, respectively, for the multichannel Gaussian inten-
sity model at the atlas location for class label , and

. The term is given by

(3)

which allows two types of prior information to be incorporated
into the segmentation procedure. The approximate location a
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neuroanatomical structure may occupy within the brain is given
by . The local relationship between anatomical
classes is encoded in , which denotes
the pairwise probability that anatomical class occurs at
the th neighbor of class . This probability depends not
only on the neighborhood location but also on the coordinates
in the atlas space , thus gives a nonstationary anisotropic
MRF model as opposed to isotropic ones typically used in the
literature. These prior probabilities are learned during the atlas
training stage, as detailed in [12].

The last term provides a means for constraining the
space of allowable atlas functions, which corresponds to the
regularization typically employed in nonlinear atlas registration
methods, e.g., continuity, differentiability, and invertibility. The
explicit expression of can be found in [14].

To reduce the computation complexity, the joint MAP estima-
tion was divided into two major stages: computing the nonlinear
atlas function and refining the segmentation. In the first stage,
(1) is simplified by ignoring the MRF term, i.e., ignoring the
neighborhood dependency of segmentation labels, which leads
to a simpler iterative approach to estimate the atlas function.
After the nonlinear atlas function is computed, an iterative con-
ditional modes (ICM) algorithm is applied to refine the segmen-
tation labels by incorporating the full MRF model but with the
atlas function being fixed.

III. ATLAS RENORMALIZATION METHOD

Because of the dependency of the image likelihood on the
prior intensity model and at each atlas
location and for each anatomical class ), the accuracy of the
atlas registration (computation of the atlas function ) and the
final segmentation often degrades when the input image has
different contrast properties than the training data used for the
atlas construction. This happens when the scanner types or
imaging sequences change during the process of a longitudinal
neuroanatomical study or when multiple acquisition types
are inevitably involved in a multicenter or multisite study. To
address this problem, we propose to automatically adjust the
prior intensity models of the atlas, in order to better fit the
input data. The atlas model renormalization is performed for
individual structures, and a linear intensity mapping is assumed
between the input image and the atlas for each structure. The
procedure is motivated by two underlying insights. The first
is that while a global linear registration does not, in general,
result in good alignment of structures in the atlas with their
true location in the image, a structure-specific linear alignment
does. The second is that while a Gaussian intensity model is a
reasonably accurate one on a location by location basis, it does
not provide a good description of the spatial distribution of
intensities of a structure, which causes us to use nonparametric
(histogram) techniques to infer the true distribution from a
novel image. We will demonstrate later that these assumptions
lead to significant improvement of the segmentation accuracy
and result in a procedure that is as accurate for novel imaging
data as it is for the data used to build the prior intensity models.

The atlas renormalization consists of a multilinear
atlas-image registration and a histogram matching step. In
the first step, a local linear registration is computed for each

individual structure, the result of which defines a (rough) delin-
eation of the particular structure on the input image. The linear
registration is defined as a 12-parameter affine transformation,
which can be denoted in matrix form as or

(4)

where denotes the affine transformation matrix.
In the second step, an intensity histogram is built from the

image and the atlas separately for each structure, and a linear in-
tensity mapping is computed to best align the two histograms. A
linear intensity mapping is used because we assumed a Gaussian
intensity model for each structure at each atlas location, and thus
a linear mapping is sufficient to correct the mean (by the offset
parameter of the linear mapping) and the standard deviation (by
the scaling factor) of the prior class-conditional Gaussian in-
tensity model for each structure. We detail the two steps in the
following. Note that we assume single-channel input images
and atlas in the following, although the extension to the mul-
tichannel case is straightforward.

A. Multilinear Atlas-Image Registration

The structure-wise linear (hence multilinear for the whole
image) registration is initialized by a global affine registration
that aligns the image to the atlas space. We note that an input
MR image first undergoes some preprocessing stages before any
of the registration is computed. The preprocessing isolates the
brain from nonbrain tissues (also known as skull-stripping) and
removes possible intensity bias field that often corrupts MR im-
ages. The preprocessing is done fully automatically as described
in [3]. After the preprocessing, the white matter intensity is,
in general, normalized around a fixed value. The same prepro-
cessing was performed on all the training data used to construct
the atlas as well.

The global linear registration finds the 12-parameter affine
transform that maximizes the likelihood of observing the
image given the atlas , or equivalently, minimizing the
residual of fitting the intensity model of the atlas to the data:

has the same expression as in (2), where the label
is fixed to be the most probable class at the atlas location

. The maximum likelihood optimization is solved using
an iterative global search along each of the rotation, scale,
and translation axes, followed by a Davidson–Fletcher–Powell
(DFP) numerical maximization [23] using the gradient of

. Due to the small degree of freedom (only 12),
the global linear registration is insensitive to changes in image
contrast.

The global registration is insufficient to accurately align each
individual structure for the purpose of histogram matching. That
is, the misalignment causes the histogram estimates of the densi-
ties to be significantly corrupted by other tissue classes. We thus
further refine the registration for each structure individually. For
this purpose, we first construct a template subvolume for each
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Fig. 2. Illustration of local linear registration for right hippocampus: (a) underlying image; (b) after global linear registration; and (c) after local refinement. Note
that hippocampus region (yellow overlay) in (b) extends a few voxels into the white matter inferior to hippocampus, an error that is corrected in (c).

structure using the atlas. The template is simply a subregion of
the atlas where the most probable class label is the same as the
structure under consideration. To provide enough contextual in-
formation, we also dilate the initial template by a small radius (3
mm in our current implementation). Finally, the intensity value
at each voxel of the template subvolume is assigned to be the
mean intensity of the most probable class at that atlas location.

The template volume is registered to the input image
by minimizing the following quadratic error function, which
takes into account possible changes in image contrast and
brightness:

(5)

where is the index of the voxels of the template volume. The
scalars and are the parameters for contrast and brightness
change, and denotes an affine transformation matrix as de-
fined in (4).

Minimization of (5) involves generating a linear approxima-
tion to the sum-of-squared-difference function using Taylor’s
theorem [23] and solving the resulting matrix equation, which
gives (cf., [24])

where is a vector for the 12
unknown affine transformation parameters and two unknown
intensity factors. Element of vector is equal to the value
of evaluated at the th
voxel . The matrix is the Jacobian matrix
of the residual , whose element is
equal to the derivative of the th residual (i.e., the residual at
the voxel ) with respect to the parameter . In particular, the
derivative of the th residual with respect to element of
matrix is equal to for elements to

and simply for elements to , where
denotes the th component of the coordinate vector at

voxel . The derivative of the th residual with respect to the
scaling parameter is simply , the negative intensity
of the template volume at the th voxel. The derivative with
respect to the offset parameter is 1 for every voxel.

Since the Taylor approximation is most valid only when the
estimation is close to the initial condition (i.e., the identity trans-
formation), the estimated parameters need to be updated itera-
tively. For each iteration, the estimated transformation is applied
to the template, and a new transformation is estimated between
the newly warped template volume and the source image. The
final transformation is obtained through a composition of the
consecutive incremental transformations. As noted above, the
estimation of the affine transformation for each individual struc-
ture starts with the same global registration as the initialization.

An example of the individual registration is shown in Fig. 2
for the right hippocampus, where the template volume is shown
on top of the given image as an overlay. Note the inclusion of
significant quantities of white matter voxels in the hippocampal
region obtained from the global linear registration, a problem
that is alleviated by the structure-specific alignment.

B. Histogram Matching

The registered template defines a mask for the corresponding
structure in the input image, the intensity histogram of which is
then built within the masked area for the particular structure.
Another histogram for the same structure is also constructed
from the atlas, using the mean intensity value at each atlas loca-
tion for the given structure.

Next, we compute a linear intensity mapping that maximizes
the correlation between the two histograms

The optimal solution is computed through a global search of
the parameter space. The search range is empirically set to [0.3,
3] for , and [ 255, 255] for , and the step size is set to 0.1 for

and 0.5 for . An example for the histogram matching is illus-
trated in Fig. 3, where we show the estimated histograms for the
hippocampus from the image and the atlas, respectively, and the
transformed atlas histogram after the linear matching. We note
that although an intensity mapping was also estimated in the pre-
vious structure registration step, the computation there included
all the voxels in the template subvolume (not only those for the
particular structure), and thus the results were not as accurate.

To improve the robustness of the intensity renormaliza-
tion, the local structure-wise linear registration and histogram
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Fig. 3. Illustration of histogram matching. Plot shows histogram for hip-
pocampus built from atlas and input image, respectively, and also atlas
histogram after computed linear intensity mapping.

Fig. 4. Cross-sectional view of two different datasets: (a) GE dataset and (b)
Siemens dataset.

matching are computed for major structures only including
(left and right hemisphere computed separately) white matter
(WM), lateral ventricles, thalamus, caudate, putamen, pal-
lidum, hippocampus, amygdala, brain stem, third ventricle, and
fourth ventricle. These structures are further grouped into three
major tissue classes: WM, gray matter (GM), and CSF. As a
result, we also estimate an average linear intensity mapping
for each of the three tissue groups. The average mapping is
assigned to other anatomical structures according to their
tissue type. In addition, we automatically detect outliers in
histogram matching results by rejecting the matching if the
initial histogram overlap is small. In this case, the individual
histogram matching for the particular structure is rejected, and
the average mapping computed from other structures of the
same tissue type is assigned to it in the end.After the histogram
matching, the computed intensity transformation is applied
to correct the mean and variance of the prior intensity model
corresponding to the given structure across the whole atlas.
In particular, the variance is scaled by , and the mean is
transformed by . The corrected atlas intensity model is
then applied to the subsequent nonlinear atlas registration and
MAP labeling steps. In addition, the nonlinear registration is
now initialized by the multilinear registration results instead

Fig. 5. Comparison of overall accuracy for 27 subjects. Bar plots show average
Dice coefficients and error bars indicate one standard deviation.

of the global one, which we anticipate will result in a more
robust and accurate procedure. Specifically, each atlas node
is initialized with a movement vector that takes it towards the
target location generated by applying the linear transform for
the structure at that node to the node position. A series of line
minimizations [23] is then performed using the standard energy
functional in [14]. This results in an approximation to the full
piecewise linear transform that is smooth and invertible; the
subsequent refinement follows the same procedure as in the
original method [14].

IV. RESULTS AND DISCUSSION

Two groups of T1-weighted MR brain images from a total
of 27 subjects were used to test the proposed method. The
first group consists of 14 data sets acquired on a 1.5T GE
Signa scanner (General Electric, Milwaukee, WI) with the
SPoiled Gradient Recalled (SPGR) sequence. The param-
eters are: ms, ms, flip angle ,
voxel size mm (124 coronal slices).
The second group consists of 13 data sets acquired on a 1.5T
Siemens Sonata scanner (Siemens Medical Solutions, Erlangen,
Germany) with the Magnetisation Prepared, Rapid Acquisition
Gradient-echo (MPRAGE) sequence; and the parameters are:

ms, ms, ms, flip angle ,
voxel size mm (128 sagittal slices). Fig. 4
shows cross sections of one GE data set and one Siemens data
set, illustrating the large differences in gray/white contrast
between these acquisition types. We note that the atlas used
in the experiments below was built from a separate set of 40
training data acquired on the same Siemens platform. Thus,
the test data sets allow us to evaluate the performance of the
proposed method both within and across scanner platforms and
pulse sequences.

We applied the whole-brain segmentation method to label all
the test data sets both with and without the atlas renormalization
procedure outlined in this paper. To evaluate the segmentation
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Fig. 6. Comparison of segmentation accuracy of two methods (with and without atlas intensity renormalization) for six individual structures: (a) thalamus, (b)
hippocampus, (c) amygdala, (d) pallidum, (e) putamen, and (f) caudate.

accuracy, we compared the automated results with manual la-
beling available on the test datasets and computed the Dice co-
efficients [25] for the volume overlap. In particular, given two
different labels (automatic and manual) of a structure, denoted
by and , and a function , which takes a label and
returns its volume, the Dice coefficient is given by [25]

For identical labelings, achieves its maximum
value of one, with decreasing values indicating less perfect
overlap.

The Dice coefficients were computed for all the structures.
The overall mean and standard deviation of the Dice coefficients
for the test subjects are summarized in Fig. 5, comparing the
old and the augmented segmentation approaches. The Dice
coefficients for six individual subcortical structures are also
shown in Fig. 6, where an average was taken across the left-
and right- hemisphere for the same structure. The group-wise
mean and standard deviation of the Dice coefficients with
and without the atlas intensity correction are also shown in
Table I for the six individual structures and the average of
all structures.

From the results we can see that the atlas renormalization
procedure largely improves the accuracy of the automated
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TABLE I
COMPARISON OF AVERAGE SEGMENTATION ACCURACY (DICE COEFFICIENTS) OF TWO GROUPS OF SUBJECTS WITH AND WITHOUT APPLYING ATLAS

INTENSITY RENORMALIZATION. THE p-VALUES WERE COMPUTED USING STANDARD PAIRED-t TEST

segmentation on the GE data sets, while the accuracy for the
Siemens data sets remains at a high level (since the Siemens
data came from the same scanner platform as the training
data used to build the atlas). From the individual structure
results, we can see that the sensitivity of the segmentation
accuracy is structure dependent. The accuracy for thalamus
is comparable across the GE and Siemens scanners and less
affected by the atlas renormalization procedure. For the other
five structures (hippocampus, amygdala, caudate, putamen, and
pallidum), the segmentation accuracy can be quite poor for
the GE data (average Dice coefficients between 0.60 and 0.75;
cf., Table I) without applying the intensity renormalization
procedure. The accuracy is improved by 10% or more (average
Dice coefficients between 0.69 and 0.82; cf., Table I) with the
newly developed intensity correction procedure incorporated
into the registration and segmentation. As indicated by the

-values shown in Table I, the bulk of improvements for the GE
data sets are statistically significant at a significance level below
0.01. For some structures, including thalamus, hippocampus, and
amygdala, the segmentation accuracy is slightly degraded for the
Siemens data sets when the atlas renormalization procedure is
applied. This is because the renormalization procedure attempts
to modify an originally correct (as reflected by the high initial
Dice coefficients) atlas intensity model in such cases and can
therefore introduce inaccuracy to the segmentation process.
Although the degradation also reaches a statistical significance
level of 0.01 for thalamus and hippocampus, its magnitude
is minimal in general and only leads to about 1% change in
the average Dice coefficients for these structures. It is worth
noting that even for the Siemens data sets the overall Dice
coefficient improves with the atlas renormalization procedure,
as shown in the last column of Table I.

We note that for some structures like hippocampus and pal-
lidum, the segmentation accuracy is still lower, in general, for
the GE data than the Siemens data even when the atlas renor-
malization procedure is applied. One explanation is that the GE
data were acquired using a different imaging sequence (SPGR)
compared to the Siemens scans (MPRAGE) and with slightly
lower imaging resolution, which appear to have lower intrinsic
image contrast as can be observed from Fig. 4. In addition, for
structures like pallidum, the local linear registration is hard to
compute accurately due to its small size and reduced contrast
with respect to surrounding structures, hence the computed in-
tensity mapping may be less reliable.

V. CONCLUSION

We have developed an atlas renormalization procedure to ac-
count for changes in image intensity contrast for an atlas-based
automatic brain segmentation method. Testing results on 27
subjects have shown that the new procedure has a minimal
effect on the performance of the atlas-based segmentation
method when no contrast change is expected but dramatically
improves the segmentation accuracy when the same atlas is
applied to image data acquired at a different scanner plat-
form (average Dice coefficients improved by 10% or more
for several structures). The procedure thus yields more robust
segmentations, which can facilitate multicenter neuroscience
and clinical studies that typically involve data acquired across
different scanner platforms, as well as rendering the tools
largely insensitive to scanner upgrades and variations in pulse
parameters. In future work, more thorough evaluation will be
conducted by acquiring additional test data from other scanner
platforms or pulse sequences. Future work also includes further
improvement of the accuracy and robustness of the multilinear
structure registration, by taking into account spatial correlation
of the multiple brain structures and by incorporating additional
prior model about plausible local deformations, which can be
estimated during atlas construction.
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