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Abstract
Performance of automated methods to isolate brain from nonbrain tissues in magnetic resonance
(MR) structural images may be influenced by MR signal inhomogeneities, type of MR image set,
regional anatomy, and age and diagnosis of subjects studied. The present study compared the
performance of four methods: Brain Extraction Tool (BET; Smith [2002]: Hum Brain Mapp 17:143–
155); 3dIntracranial (Ward [1999] Milwaukee: Biophysics Research Institute, Medical College of
Wisconsin; in AFNI); a Hybrid Watershed algorithm (HWA, Segonne et al. [2004] Neuroimage
22:1060–1075; in FreeSurfer); and Brain Surface Extractor (BSE, Sandor and Leahy [1997] IEEE
Trans Med Imag 16:41–54; Shattuck et al. [2001] Neuroimage 13:856 – 876) to manually stripped
images. The methods were applied to uncorrected and bias-corrected datasets; Legacy and
Contemporary T1-weighted image sets; and four diagnostic groups (depressed, Alzheimer’s, young
and elderly control). To provide a criterion for outcome assessment, two experts manually stripped
six sagittal sections for each dataset in locations where brain and nonbrain tissue are difficult to
distinguish. Methods were compared on Jaccard similarity coefficients, Hausdorff distances, and an
Expectation-Maximization algorithm. Methods tended to perform better on contemporary datasets;
bias correction did not significantly improve method performance. Mesial sections were most
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difficult for all methods. Although AD image sets were most difficult to strip, HWA and BSE were
more robust across diagnostic groups compared with 3dIntracranial and BET. With respect to
specificity, BSE tended to perform best across all groups, whereas HWA was more sensitive than
other methods. The results of this study may direct users towards a method appropriate to their T1-
weighted datasets and improve the efficiency of processing for large, multisite neuroimaging studies.
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INTRODUCTION
Quantitative morphometric studies of magnetic resonance (MR) images often require a
preliminary step to isolate brain from extracranial or “nonbrain” tissues. This preliminary step,
commonly referred to as “skull-stripping,” facilitates image processing such as surface
rendering, cortical flattening, image registration, de-identification, and tissue segmentation.
To be feasible for large-scale, multisite studies, such as the projects supported by the
Biomedical Informatics Research Network (BIRN), skull-stripping methods should be
accurate and relatively automated. Numerous automated skull-stripping methods have been
proposed [e.g., Dale et al., 1999; Hahn and Peitgen, 2000; Sandor and Leahy, 1997; Segonne
et al., 2004; Shattuck et al., 2001; Smith, 2002; Ward, 1999] and are widely used. However,
the performance of these methods, which rely on signal intensity and signal contrast, may be
influenced by numerous factors including MR signal inhomogeneities, type of MR image set,
gradient performance, stability of system electronics, and extent of neurodegeneration in the
subjects studied [Smith, 2002]. Suboptimal outcomes of automated processing often require
manual adjustment of method parameters and/or manual editing to create a suitable skull-
stripped volume. Manual adjustment increases processing time and the level of required
expertise and potentially introduces inaccuracies or inconsistencies. There is a clear need to
better understand the factors that influence the performance of various automated skull-
stripping methods. The results of such studies may direct users towards a method appropriate
to their particular datasets and improve the efficiency of processing for large, multisite
neuroimaging studies.

In addition to manual approaches, the primary bases for skull-stripping include intensity
threshold, morphology, watershed, surface-modeling, and hybrid methods [e.g., Dale et al.,
1999; Hahn and Peitgen, 2000; Sandor and Leahy, 1997; Segonne et al., 2004; Shattuck et al.,
2001; Smith, 2002; Ward, 1999]. Although perhaps the most accurate, manual methods require
significant time for completion, particularly on high-resolution volumes that often contain
more than 120 slices. Furthermore, rigorous training is crucial to develop reliable standards
that reduce the subjectivity of decisions. Depending on whether a study collects single contrast
images or images with varying contrast, threshold methods define minimum and maximum
values along one or more axes representing voxel intensities for univariate or multivariate
histograms [e.g., DeCarli et al., 1992]. Morphology or region-based methods rely on
connectivity between regions, such as similar intensity values, and often are used with intensity
thresholding methods [e.g., 3dIntracranial, Ward, 1999; in AFNI, Cox, 1996]. Other
approaches combine morphological methods with edge detection [e.g., Brain Surface
Extractor, Sandor and Leahy, 1997; Shattuck et al., 2001]. Although watershed algorithms use
image intensities, they operate under the assumption of white matter connectivity [e.g., Hahn
and Peitgen, 2000]. Watershed algorithms try to find a local optimum of the intensity gradient
for preflooding of the defined basins to segment the image into brain and nonbrain components.
That is, the volume is separated into regions connected in 3-D space, and basins are filled to a
preset height. Surface-model-based methods, in contrast, incorporate shape information
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through modeling the brain surface with a smoothed deformed template [e.g., Dale et al.,
1999; Brain Extraction Tool, Smith, 2002]. A recent Hybrid Watershed method [HWA,
Segonne et al., 2004; in Free-Surfer, Dale et al., 1999; Fischl and Dale, 2000; Fischl et al.,
1999] incorporated the watershed techniques of Hahn and Peitgen [2000] with the surface-
based methods of Dale et al. [1999]. The resulting HWA method relies on white matter
connectivity to build an initial estimate of the brain volume and applies a parametric deformable
surface model, integrating geometric constraints and statistical atlas information, to locate the
brain boundary.

A few previous studies of available automated skull-stripping methods have employed
quantitative error rate analyses to compare the potential advantages and disadvantages of each
approach [Boesen et al., 2004; Lee et al., 2003; Segonne et al., 2004; Smith, 2002]. In a careful
evaluation of automated skull-stripping methods, Smith [2002] reviewed various approaches,
introduced the Brain Extraction Tool (BET), and examined the automated performance of BET
and two commonly available methods relative to manually skull-stripped volumes. The
automated performance of BET (v. 1.1) was compared to the performance of a modified version
of AFNI’s 3dIntracranial [Ward, 1999; in AFNI v. 2.29, Cox, 1996] and Brain Surface
Extractor [BSE v. 2.09, Sandor and Leahy, 1997; Shattuck et al., 2001]. The test data were
acquired across many scanners and included primarily T1-weighted images as well as some
T2 and PD-weighted image sets.. Analysis of a percent error measure revealed that BET
produced significantly fewer errors relative to the modified AFNI and BSE methods across all
dataset types and within only the T1-weighted datasets, although the difference was smaller in
the latter comparison. Relative to the hand-segmented volumes, BET tended to produce a
slightly smaller and more smoothed volume. Smith [2002] also examined the effect of
systematically varying software parameters for each dataset. The findings suggested that all
three methods performed similarly well under individually optimized conditions, particularly
for T1-weighted images. The optimal parameters selected, however, did not reveal any
consistent within-sequence values that might be automatically applied; thus, BET was judged
the most robust and successfully automated application examined when global parameters were
used. The author [Smith, 2002] suggested that performance of these automated methods might
be improved with preprocessing, such as the correction of field inhomogeneities, although most
bias correction algorithms require datasets be skull-stripped prior to their application.

Subsequently, Lee et al. [2003] reported an evaluation of BET, BSE, and ANALYZE 4.0 as
well as the authors’ local Region Growing Tool (RG) relative to manual skull-stripping. BET
and BSE were applied in an automated fashion, whereas ANALYZE and RG required manual
interaction. All methods were tested on the T1-weighted Montreal Neurological Institute’s
BrainWeb phantom at different levels of noise and on T1-weighted human datasets from the
Internet Brain Segmentation Repository. Similarity indices that incorporated both false-
positive and false-negative rates suggested no difference between the methods for the small
set of phantom data, although BSE excluded some brain tissue. Examination of the human data
revealed that RG was more similar to the manual criterion than were the other three methods.
The segmentation error rates suggested that BET included more nonbrain tissue, whereas BSE
and ANALYZE both removed some brain tissue. The authors suggested that the automated
processing results were somewhat inaccurate, but that a two-step processing procedure utilizing
both the semiautomated and automated methods may be useful.

Two more recent studies have examined skull-stripping performance with slightly different
approaches. Boesen et al. [2004] examined the performance of BET [v. 1, Smith, 2002], BSE
[v. 2.99, Sandor and Leahy, 1997; Shattuck et al., 2001], SPM (2b), and the Minneapolis
Consensus Strip (MCS; intensity based thresholding and the use of BSE). Parameters for BET
and BSE were examined in two ways: 1) optimized parameters based on three training volumes
and then applied in an automated fashion, and 2) subject-specific parameter settings based on
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an exhaustive review of all parameter combinations, selecting the outcome that produced the
least misclassified tissue. Two sets of T1-weighted volumes were stripped and compared to
manually stripped volumes. Results suggested that MCS and, in some cases, BSE tended to
outperform the other methods, although MCS was least affected by site-related differences.
Although MCS requires more user interaction, the authors suggest that such a hybrid method
may improve performance.

Finally, a relatively new hybrid approach, Hybrid Watershed [HWA, Segonne et al., 2004],
was compared to the performance of four skull-stripping methods: FreeSurfer’s original
method [Dale et al., 1999]; BET [Smith, 2002]; a watershed algorithm [Hahn and Peitgen,
2000]; and BSE [Shattuck et al., 2001]. Forty-three T1-weighted images from two sites were
used and automated performance was compared to manually skull-stripped volumes. HWA
produced the highest similarity coefficients for both datasets, BSE performed second best on
the higher quality dataset, whereas BET often included additional nonbrain tissue. In an
evaluation of the risk reflecting a higher cost related to removing brain tissue than to adding
nonbrain tissue, HWA typically included all brain tissue and found the pial surface in most
datasets.

Although these studies launched the quantitative evaluation of skull-stripping methods,
important questions need to be answered before automated skull-stripping methods can be
faithfully used in large-scale image analysis. First, little published research has focused on the
impact of subject variables, such as age and diagnosis, on the accuracy of skull-stripping
routines. Yet both aging and common neurodegenerative diseases, such as Alzheimer’s disease
(AD), reduce image contrast and adversely homogenize histograms, create partial volume
effects, and obscure edges. Second, although Smith [2002] suggested that bias correction of
MR signal inhomogeneities might improve the results of automated skull-stripping programs,
to the best of our knowledge, no studies have directly compared skull-stripping of bias corrected
and uncorrected images. Third, large-scale image sets frequently contain legacy images
collected over many years. Legacy image sets often include images of varying quality as
gradients, software and electronic components of MR systems change over time. Little has
been published regarding how results of skull-stripping of legacy images compares with results
from more homogenous, contemporary image sets. Fourth, previous skull-stripping studies
have not evaluated the impact of local anatomy on skull-stripping results. Yet in our experience,
separation of skull from brain can be especially difficult in some regions, such as the anterior
or posterior fossa, where subtle gradations of white matter, gray matter, soft tissue, and bone
occur in proximity. Finally, most previous studies used one metric to measure the accuracy of
skull-stripping methods. Multidimensional metrics of performance, such as those presented
here, may provide a better description of performance comparisons, as they can measure several
aspects of similarity [Hand et al., 2001].

In the present study we investigated the effects of age and diagnosis, bias correction, type of
image set (Legacy vs. Contemporary), and local anatomy (slice location) on the performance
of four automated skull-stripping methods. We predicted that MR brain images obtained from
older individuals and those obtained from patients with AD would be less accurately skull-
stripped than images from other groups. We expected that bias correction would improve the
performance of 3dIntracranial due to its reliance on fitting the intensity histogram, whereas
other methods also might be improved to varying extents. We also predicted less accurate skull-
stripping of legacy images, where data are less likely to meet contemporary quality standards
for image acquisition. And finally, given the difficulties distinguishing posterior fossa soft
tissue from adjacent brain, we hypothesized that mesial brain slices, which include large
posterior fossa regions and voxels including both partially volumed tissue and CSF, would be
less accurately skull-stripped than other regions. This assessment of local anatomical effects
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of skull-stripping, rather than examining the whole brain volume, is particularly relevant for
subsequent morphometric studies of these regions of interest.

The methods studied herein—3dIntracranial [Ward, 1999; in AFNI, Cox, 1996], BET [Smith,
2002], HWA [Segonne et al., 2004; in FreeSurfer, Dale et al., 1999; Fischl and Dale, 2000;
Fischl et al., 1999], and BSE [Sandor and Leahy, 1997; Shattuck et al., 2001]—encompass
most of the commonly used algorithms for skull-stripping. We evaluated the most current
software versions with expert input from developers to select the appropriate parameters for
automated application. To provide a reasonable criterion, or “gold standard,” for outcome
assessment, two experts manually skull-stripped six sagittal sections in standard locations for
all datasets. These manual outcomes were compared to automated outcomes with the Jaccard
similarity index [JSC; Jaccard, 1912; Zou et al., 2004a,b], which expresses the overlap between
automated and manual skull-stripping for each slice, and the Hausdorff distance measure
[Huttenlocher et al., 1993], which examines the degree of mismatch between the contours of
two image sets, providing information on shape differences. Then all methods, including
manual skull-stripping, were compared with an Expectation-Maximization algorithm [EM;
Warfield et al., 2004; Zou et al., 2004b], which provides both sensitivity and specificity
information.

MATERIALS AND METHODS
MR Image Sets

Data collected using two common structural gradient-echo (SPGR) T1-weighted pulse
sequences were examined. All datasets were collected on a GE 1.5 T magnet at the VA San
Diego Healthcare System MRI Facility that was subjected to regular hardware and software
upgrades over time. Legacy Datasets were collected over 4 years in the mid- to late-1990s
(June of 1994 and July of 1998): TR = 24 ms, TE = 5 ms, NEX = 2, flip angle = 45°, field of
view 24 cm, and contiguous 1.2-mm sections (sagittal acquisition). Contemporary Datasets
were collected between May of 2002 and April of 2003: TR = 20 ms, TE = 6 ms, NEX = 1,
flip angle = 30°, field of view 25 cm, and contiguous 1.5-mm sections (sagittal acquisition).
Of the 32 datasets examined, 16 were Legacy, and 16 were Contemporary (Table I). The
University of California, San Diego, institutional review board approved all procedures and
written informed consent was obtained from all subjects.

Diagnostic Groups
For each MR Image set of 16 datasets, four different diagnostic groups were represented,
including depressed (DEPR), Alzheimer’s (AD), young (YNC), and elderly normal controls
(ENC), with four subjects from each group (Table I). The YNC and DEPR groups were similar
in age and education, as were the ENC and AD groups. Each diagnostic group from Legacy
and Contemporary datasets were similar in age and gender, and the AD groups were also
matched on disease stage as measured with the Mini-Mental State Examination [MMSE,
Folstein et al., 1975].

Bias Correction
To correct image bias we employed the nonparametric nonuniform intensity normalization
method [N3, Sled et al., 1998], which uses a locally adaptive bias correction algorithm. This
method was chosen for its applicability to un-skull-stripped image sets and for its excellent
performance compared with other bias correction methods [Arnold et al., 2001]. All 32 datasets
were studied with and without prior bias correction with N3.

Fennema-Notestine et al. Page 5

Hum Brain Mapp. Author manuscript; available in PMC 2008 June 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Manual Skull-Stripping
Two anatomists manually skull-stripped six sagittal slices from each raw MR image set to
provide a criterion, or “gold standard,” against which to judge the automated skull-stripping
outcomes. Both anatomists (CPC and SM) were experienced neuroimaging experts with
training in neuroscience and neuroanatomy. Both anatomists, in collaboration with a trained
neuroanatomist (CFN), completed four sample datasets not included in the present study to
formalize a set of criteria for skull-stripping. If anatomists were unable to definitively classify
tissue as brain or nonbrain, they were instructed to conservatively include this tissue.
Anatomists were provided with all orthogonal views, which provided them with better spatial
information to make their decisions. Comparisons of the two anatomists manually skull-
stripped datasets are examined in the Results section. Six sagittal slices were selected to assess
skull-stripping on mid-sagittal slices and on lateral slices passing through the anterior medial
temporal, anterior inferior frontal, posterior cerebellar regions, and posterior occipital regions
(Fig. 1). Brain and nonbrain tissues in these regions are often difficult to distinguish on T1-
weighted images, particularly in the posterior fossa (Fig. 1, Slices 4–6A) and anterior temporal
lobe (Fig. 1, Slices 4–6B). The mid-line sections, in addition to including the posterior fossa,
often contain cerebrospinal fluid that may be difficult to distinguish from partially volumed
adjacent cortex (Fig. 1, Slice 4C,4D).

Automated Methods and Parameter Selection
For each method except 3dIntracranial (the developer chose not to participate), developers of
the automated methods were provided with two sample datasets, one young, healthy control
from the Legacy image set and one from the Contemporary image set. We asked developers
to suggest the most appropriate parameters for the automated application of their software
using the image sets provided. These values were used for all analyses in this study. The
selected parameters and the computational processing times are defined within each method
description below. The elapsed average processing time per dataset is based on the use of a
Dell Pentium Xeon 2.2 or 2.4 GHz with 512 MB RAM.

3dIntracranial [3dIntra, Ward, 1999]; in AFNI v. 2.29 [Cox, 1996]—3dIntra, included
in the Analysis of Functional NeuroImage (AFNI) library, involves several steps. First a three-
compartment Gaussian model is fit to the intensity histogram. A downhill simplex method is
used to estimate means, standard deviations, and weights of presumed gray matter, white
matter, and background compartments. From these estimated values a probability density
function (PDF) is derived to set upper and lower signal intensity bounds as a first step to identify
brain voxels. Upper and lower bounds are set to exclude nonbrain voxels. Next, a connected
brain region within each axial slice is identified by finding the complement of the largest
nonbrain region within that slice, under the constraint that the area of connected brain becomes
smaller as the segmentation moves from the center of the brain. The union of such connected
brain regions is formed as this slice-by-slice segmentation is repeated for sagittal and coronal
slices. Next, a 3D envelope based on local averaging smoothes brain edges. Finally, brain
voxels with few brain voxel-neighbors are excluded from brain, whereas holes with many
brain-voxel-neighbors are included. 3dIntracranial is integrated in the extensive library of
AFNI image analysis tools and its public source code is freely available at
http://afni.nimh.nih.gov/afni/. The 3dIntracranial parameters utilized in the present study were
the default parameters, described as follows: minimum voxel intensity limit = internal
probability density function (PDF) estimate for lower bound; maximum voxel intensity limit
= internal PDF estimate for upper bound; minimum voxel connectivity to enter m = 4;
maximum voxel connectivity to leave n = 2; and spatial smoothing of segmentation mask.

Brain Extraction Tool, v. 1.2 [BET, Smith, 2002]—BET employs a deformable model
to fit the brain’s surface using a set of “locally adaptive model forces.” This method estimates
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the minimum and maximum intensity values for the brain image, a “center of gravity” of the
head image, and head size based on a spherical equivalent, and subsequently initializes the
triangular tessellation of the sphere’s (head’s) surface. BET v. 1.2 is freely available in the
FMRIB FSL Software Library (http://www.fmrib.ox.ac.uk/fsl/). The developer recommended
the default parameters for automated processing of both the legacy and contemporary images.
The parameters utilized in the application herein are the default parameters, described as
follows: fractional intensity threshold = 0.5; vertical gradient in fractional intensity threshold
= 0.

Hybrid Watershed Algorithm, v. 1.21 [HWA, Segonne et al., 2004]; in FreeSurfer
[Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 1999]—This HWA method is
a hybrid of a watershed algorithm [Hahn and Peitgen, 2000] and a deformable surface model
[Dale et al., 1999] that was designed to be conservatively sensitive to the inclusion of brain
tissue. In general, watershed algorithms segment images into connected components, using
local optima of image intensity gradients. HWA uses a watershed algorithm that is solely based
on image intensities; the algorithm, which operates under the assumption of the connectivity
of white matter, segments the image into brain and nonbrain components. A deformable
surface-model is then applied to locate the boundary of the brain in the image. A final option
under development will incorporate an atlas-based analysis to verify the correctness of the
resulting surface, modify it if important structures have been removed, and locate the best-
estimate boundary of the brain in the image. In HWA v. 1.21 the atlas-based option was not
finalized, resulting in a considerably better performance without the atlas-based option.
Therefore, the present study examined HWA without the atlas option. HWA v. 1.21 is freely
available as a component of the FreeSurfer software package at
http://surfer.nmr.mgh.harvard.edu/. HWA developers recommended the default parameters for
automated processing of both legacy and contemporary images. The parameters utilized in this
study are the hard-coded default parameters of HWA without the atlas option.

Brain Surface Extractor v. 3.3 [BSE, Sandor and Leahy, 1997; Shattuck et al.,
2001]—BSE, designed to fit the surface of all CNS regions, including the spinal cord, uses a
sequence of anisotropic diffusion filtering, Marr-Hildreth edge detection, and morphological
processing to segment the brain within whole-head MRI. In MRI of the brain the boundary
between the brain and the skull will produce a contour in the Marr-Hildreth edge detection
result. Additional gradients in the image may otherwise act as decoys for automated methods;
for this reason, BSE uses anisotropic diffusion filtering [Perona and Malik, 1990]. This is a
spatially adaptive edge-preserving filtering technique that smoothes small image gradients
while preserving larger variations that correspond to strong edges in the image. Because of
noise in the image and actual anatomic connections such as optic tracts, the brain contour that
BSE generates may not separate the brain from the rest of the head. BSE breaks remaining
connections between the brain and the other tissues in the head using a morphological erosion
operation. After identifying the brain using a connected component operation, BSE applies a
corresponding dilation operation to undo the effects of the erosion. As a final step, BSE applies
a morphological closing operation that fills small pits and holes that may occur in the brain
surface. BSE v. 3.3 is freely available for download from the BrainSuite website,
http://neuroimage.usc.edu/brainsuite/. The developers recommended the following parameters
for automated processing of both legacy and contemporary image sets: anisotropic filter = 5
iterations with 5.0 diffusion constant; edge detector kernel = 0.8 sigma. These parameters were
utilized in this study.

Statistical Analyses
Data analytic methods included the following: 1) the comparison of two manual anatomists’
performance using the Jaccard similarity coefficient (JSC) to measure degree of
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correspondence, or overlap, for each image slice; 2) detailed qualitative review of all outcomes;
3) the comparison of each manually skull-stripped outcome (the criterion) to the outcome of
each automated method using JSC to measure the degree of correspondence for each slice
[Jaccard, 1912; Zou et al., 2004a,b]; 4) a similar comparison of methods with the Hausdorff
distance measure [Huttenlocher et al., 1993] to examine the degree of mismatch between the
contours (or shape) of two image sets; and 5) the comparison of the sensitivity and specificity
of all methods (including both manual sets) derived from an Expectation-Maximization (EM)
algorithm [STAPLE, Warfield et al., 2004; Zou et al., 2004b], which provides a maximum
likelihood estimate of the underlying brain prototype inferred from the results of all skull-
stripping methods.

Jaccard Similarity Comparison—The JSC is formulated as:

where A is the area of brain region of the manually skull-stripped image slice (criterion) and
B is the area of brain region of the corresponding image slice skull stripped using the compared
skull-stripping tool [Jaccard, 1912; Zou et al., 2004a,b]. A JSC of 1.0 represents complete
overlap or agreement, whereas an index of 0.0 represents no overlap. At both extremes, this
JSC is similar to the Dice similarity coefficient, which is a simple transform. First, JSC was
employed to describe the overall level of similarity between the two manual outcomes by
expressing the overlap between each pair of slices. Second, the results of the four automated
skull-stripping tools (with and without bias correction) were compared to the manually stripped
slices.

Hausdorff distance image comparison—We applied Hausdorff distance measures
[Huttenlocher et al., 1993] to examine the degree of mismatch between the contours of two
image sets (A and B). This measure reflects the distance of the point in A that is farthest from
any point of B and vice versa. Given two finite point sets A = {a1, …,ap} and B = {b1, …,
bq}, where A and B are sets of points on the contour of a skull-stripped brain slice. The
Hausdorff distance is defined as:

The directed Hausdorff distance from A to B h(A,B) is defined as:

Here the norm is L2 or Euclidean norm, where h(A,B) and h(B,A) are asymmetrical distances.

Since Hausdorff distance measures the extent to which each point of a particular image point
set lies near some point of another image point set, it can be used to determine the degree of
resemblance between two objects superimposed on one another. For the Hausdorff distance
d, every point of A must be within a distance d of some point of B and vice versa. The maximum
displacement for the Hausdorff measure is calculated for each image comparison, A and B.
For example, in Figure 4 (right panels), the distance from each point on the yellow contour (A:
manual strip) to each point on the red contour (B: automated strip) is calculated. In our
estimation of the Hausdorff distance, we adjusted the calculations to exclude outliers; if only
a very few points are far from average, these extreme distances would not meaningfully
represent common method performance. That is, the distance measure would not be
representative of the common features resulting from automated application. In the present
application of the Hausdorff measure, the algorithm first orders the boundary points distances
(in ascending order). The 25th and 75th percentiles are then estimated for image A and B and
the interquartile range (IQR) for image A and B is estimated. The IQR is equal to the boundary
point distance at the 75th percentile less the boundary point distance at the 25th percentile. The
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present comparison utilized the upper inner fence as defined by the boundary point distance at
the 75th percentile plus 1.5*IQR [Tukey, 1977]. This fence is used as a more robust normal
outlier boundary than maximum distance in Hausdorff calculations yielding a modified
Hausdorff measure likely to be less sensitive to measurement error.

Expectation-maximization (EM) comparison—Warfield et al. [2004] developed an EM
algorithm, named STAPLE, for computing a probabilistic estimate of the ground-truth
segmentation from a group of expert segmentations, and a simultaneous measure of the quality
of each expert. As we applied their algorithm, this measure is a maximum likelihood estimate
of the underlying agreement among all of the skull-stripping methods (two manual plus four
automated both with and without bias correction). The underlying agreement is represented by
an unobserved or hidden skull-stripped prototype that divides all voxels into brain or nonbrain
sets, a hidden, binary ground truth segmentation.

The iterative log-likelihood maximization algorithm estimates specificity and sensitivity
parameters given a priori probabilities of hidden binary ground truth segmentation and initial
estimates of specificity and sensitivity. The sensitivity of an expert j expressed as a proportion
pj, where ({pj} ∈[0,1]), is the relative frequency of an expert decision that a voxel belongs to
the brain region when the ground truth for that voxel also indicates the same decision. The
specificity of an expert j expressed as a proportion qj, where ({qj} ∈[0,1]), is the relative
frequency of an expert decision that a voxel does not belong to the brain region when the ground
truth for that voxel also indicates the same decision. The a priori probabilities for all the voxels
for each slice of each subject tested are set to 0.5, indicating no initial knowledge about ground
truth. The initial estimates for sensitivity and specificity are all set to 0.9. The termination
criterion for convergence set the root mean square error to < 0.005.

Statistical summary—We employed mixed model analyses with the conventional alpha
level of 0.05 for a significant statistical effect. Partial eta-squared (η2) values are provided as
an estimate of effect size. Between-subjects effects were examined for Image Set (Legacy,
Contemporary) and Diagnostic Group (YNC, ENC, DEPR, and AD). Univariate within-
subjects repeated measures effects were examined for Slice (Slices 1 through 6 as in Fig. 1),
Bias Correction (with and without N3 correction), and Method (3dIntra, BET, BSE, and HWA).
These univariate analyses employed the Huynh-Feldt correction since sphericity could not be
assumed; logarithmic transforms of the same data produced similar findings. Both within- and
between-group post-hoc analyses contrasted pairs of each condition in sequence. For example,
post-hoc analyses of Diagnostic Group included three comparisons: YNC vs. DEPR, DEPR
vs. ENC, ENC vs. AD. To analyze agreement between raters we performed a Slice by Image
Set by Diagnostic Group mixed design analysis of variance (ANOVA) using JSC as the
dependent variable. Investigation of the influence of study variables on the correspondence of
each automated method with each manual outcome comparison required a Method by Bias
Correction by Slice by Image Set by Diagnostic Group mixed design (ANOVA) with the JSC
and the modified Hausdorff measure analyzed as separate dependent variables. The latter
ANOVA design also was used to investigate the influence of study variables on EM-derived
sensitivity and specificity. EM analyses reported herein included all four automated methods
and the two manual outcomes.

RESULTS
Statistical Comparison of Two Manually Stripped Outcomes

When the two anatomists’ manually stripped sections were compared, the grand mean JSC
averaged across slices was 0.938 (SE = 0.002). There were significant main effects of Slice
(F(4.5, 108.5) = 18.5, P < 0.001, partial η2 = 0.44) and Diagnostic Group (F(3,24) = 7.2, P =
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0.001, partial η2 = 0.47). Neither the effect of Image Set nor any interactions reached
significance (all P > 0.05; all partial η2 < 0.13). Post-hoc, within-subjects contrasts suggested
that the similarity coefficient was lowest for the two mid-line sagittal sections (Fig. 1, Slices
3, 4) relative to the four lateral sections; these mid-line sections were most variable between
anatomists. As predicted, contrasts for Diagnostic Group suggested that the similarity
coefficients were lower for ENC and AD groups relative to the YNC and DEPR subjects (F
(3,24) = 7.2, P = 0.001, partial η2 = 0.47). Specifically, the coefficients for the YNC and DEPR
groups did not differ (P > 0.05) and neither did the ENC and AD groups (P > 0.05). The
similarity coefficients for the DEPR and ENC groups, however, were significantly different
(P = 0.001). In summary, the brain contours drawn by anatomists agreed less in the two mesial
slices and for data from the older diagnostic groups. These conditions that were more difficult
for manual skull-stripping may also prove difficult for the automated methods.

Qualitative Evaluation of All Outcomes
Qualitative review of all individual results revealed that the outcomes differed in: 1) the amount
of cerebrospinal fluid (CSF) included in the stripped volume; 2) the type of nonbrain remaining
in the stripped volume; and 3) the regions and extent of brain tissue loss in the stripped volume.
All methods included internal (e.g., ventricular) CSF in the resulting volume, which would
allow future processing to evaluate ventricular volume. HWA consistently included external
CSF in the space between brain tissue and the external dura (subarachnoid space; HWA in Fig.
2).

The type and extent of nonbrain tissue remaining in the stripped volumes varied across methods
and the most common results are described here (Figs. 2–4). All methods tended to leave some
nonbrain tissue in the posterior fossa (Fig. 2). As intended by developers, BSE volumes
consistently include the spinal cord (Fig. 2). BET tended to leave muscle and other tissue in
the mid-neck region (Figs. 2–4). On some occasions, nonbrain included in 3dIntra results was
found in similar areas, although to a lesser extent. HWA volumes consistently included
surrounding subarachnoid space and nonbrain dura (Figs. 2–4), occasionally including tissue
around the eyes (Fig. 2), although HWA consistently removed nonbrain tissues in the neck
regions.

The region and extent of brain tissue loss in stripped volumes also varied across methods (Figs.
3, 4). HWA was sensitive to retaining brain volume. On one occasion, however, the cerebellar
volume was reduced. In general, the anterior frontal cortex, anterior temporal cortex, posterior
occipital cortex, and cerebellar areas were common locations for loss of cortical voxels in other
methods (3dIntra, BET, and BSE). The most cortical loss on stripped volumes of the
Contemporary datasets tended to be a thin layer of brain voxels in these areas, with BSE
seeming to result in the least amount of tissue loss. In the Legacy datasets, however, the loss
of brain tissue was more severe in some cases for these methods.

Statistical Comparisons of Automated Methods
The average elapsed processing time for performing automated applications per dataset was
calculated for each automated method based on the performance across all 32 datasets.
3dIntracranial required less than 1 min (53.9 s; SD = 10.5), BET required less than 4 min (223.1
s; SD = 60.0), HWA required less than 8 min (473.6 s; SD = 127.8), and BSE required on the
order of 15 sec (14.2 s; SD = 0.8).

The effects of each condition (Image Set, Slice, Bias Correction, and Diagnostic Group) are
described separately, followed by a description of the Method effects and interactions.
Statistical results for significant findings are reported for JSC (Table II), Hausdorff distance
(Table III), and EM Sensitivity and Specificity (Table IV). JSC and Hausdorff distance analyses
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were completed for each anatomist separately. Findings were similar for both anatomists unless
otherwise reported; the representative findings for Anatomist 1 (CC) are reported herein for
simplicity. EM analyses represent the inclusion of all four automated methods and the two
manual outcomes. All results described emphasize the comparison of methods.

Image set—There were no significant differences of JSC or Hausdorff distance between the
Image Sets studied (Legacy vs. Contemporary) when the contour of either rater was used as
the ground truth (Anatomist 1: JSC partial η2 = 0.03, Hausdorff partial η2 = 0.12; Anatomist
2: JSC partial η2 = 0.01, Hausdorff partial η2 = 0.10). Thus, the correspondence of each
anatomist’s brain contour to the contours produced by the four automated skull-stripping
programs was similar for the two Image Sets. EM analyses, however, revealed a significant
effect of Image Set for Sensitivity (Table IV); the effect did not reach significance for
Specificity (F(1,24) = 3.5, P = 0.074, partial η2 = 0.13). The Contemporary data resulted in
greater sensitivity (mean = 0.960, SE = 0.009) relative to the legacy data (mean = 0.926, SE =
0.009). Interactions between Image Set and other conditions are described below.

Slice (regional anatomy)—Significant main effects of Slice were found across all measures
(Tables II–IV). The effects of Slice were similar to those found in the comparison of the two
anatomists’ manual skull-stripping results; that is, in general the two midline slices (Fig. 1,
Slices 3, 4) had lower similarity coefficients and higher distance measures relative to the more
lateral slices. Slice significantly interacted with Image Set for JSC (Table II) and measures of
Sensitivity and Specificity yielded by the EM algorithm (Table IV). Mesial slices from Legacy
data were least similar to the criterion dataset, whereas mesial (Fig. 1, Slices 3, 4) and most
lateral (Fig. 1, Slices 1, 6) slices from Contemporary data were least similar. Specificity was
best moving from mesial to lateral slices, particularly for the Contemporary data.

Bias correction—There was no significant main effect of bias correction for any of the
measures (all partial η2 < 0.05), and no interactions with bias correction reached significance.
Although there were some individual cases that qualitatively appeared to benefit from bias
correction, this effect was not significant over any condition.

Diagnostic group—The main effect of Diagnostic Group reached significance for all
measures (Tables II–IV). Planned contrasts supported the hypothesis that all measures were
significantly poorer for the AD group relative to all other groups. The YNC and DEPR groups
did not differ significantly, and, unexpectedly, neither did the DEPR and ENC groups. The
JSC for Anatomist 2 resulted in a significant Diagnostic Group by Slice by Image Set
interaction (Table II), although this interaction did not reach significance for Anatomist 1 (F
(14.8, 118.2) = 1.5, P = 0.12, partial η2 = 0.16). This 3-way interaction is difficult to interpret,
but it appears to suggest that the Contemporary data may result in better performance for the
mesial slices for the older Diagnostic Groups. Diagnostic Group did not significantly interact
with Image Set, Slice, or Bias Correction for any other measures. Interactions involving Method
are examined below.

Automated methods—Direct evaluation of the four automated skull-stripping methods
(Table V) revealed consistent differences for JSC (Table II; analyses compared automated
performance to manual method) and EM Sensitivity (Table IV; analyses included all automated
and manual methods) measures (but not EM Specificity or Hausdorff indices). Post-hoc JSC
contrasts for Method indicated that 3dIntra and BET did not differ significantly and neither
did BSE and HWA. BET and BSE, however, were significantly different (P = 0.003). That is,
BSE and HWA produced higher similarity measures than 3dIntra and BET for both anatomists
(Table V). With respect to Sensitivity, 3dIntra, BET, and BSE did not differ significantly,
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whereas HWA was significantly more sensitive than BSE (P < 0.001). Thus, HWA was
significantly more sensitive than all other automated methods (Table V).

For the measure of Sensitivity, Method significantly interacted with Image Set (Table IV). The
performance of BET was greatly affected by Image Set; BET was least sensitive on the Legacy
data with respect to all other methods, but performed better with the Contemporary data. No
significant interactions were observed between Image Set and automated Method for other
measures. The nonsignificant interaction of Image Set with Method accounted for less than
6% of the observed variation of JSC or Hausdorff distance.

There were significant Method by Slice interactions for the JSC (Table II) and EM Sensitivity
(Table IV). In general, BSE and HWA performed relatively similarly across slices with the
mesial slices least similar; 3dIntra and BET, both with lower overall similarity coefficients,
performed differently across slices. 3dIntra performed most poorly on Slice 1 with an otherwise
similar pattern to BSE and HWA. BET, in contrast, performed best on Slice 1 and then at a
slightly lower level across Slices 2–6. With respect to Sensitivity, HWA performed consistently
high across all slices. Although less sensitive, BSE was also fairly consistent across slices, with
the exception of poor performance on Slice 1. 3dIntra also was least sensitive on Slice 1. BET
was least sensitive for the two mesial slices (Slices 3 and 4).

For the JSC, the Method by Slice by Image Set interaction was significant for Anatomist 2
(Table II), although this interaction did not reach significance for Anatomist 1 (P = 0.11, partial
η2 = 0.08). This 3-way interaction, however, was also significant for EM Sensitivity (Table
IV).

Of considerable interest, the effect of Diagnostic Group on JSC and Hausdorff distance varied
by automated skull-stripping method for both anatomists (Figs. 5, 6; Tables II, III). For EM
Specificity, although there was no significant main effect of Method (partial η2 = 0.039; Table
V), there was a significant interaction between Method and Diagnostic Group (Table IV; Fig.
7). EM Sensitivity, in contrast, did not significantly interact with Diagnostic Group, although
the main effects of Diagnostic Group and Method were both significant (Table IV; Fig. 8). Of
critical interest, the post-hoc analyses of the interactions between Method and Diagnostic
Group revealed that when compared with BSE and HWA, 3dIntra had significantly lower
similarity and larger distance coefficients for the AD data, and BET had lower similarity and
larger distance coefficients for the ENC and AD data (Figs. 5, 6). Thus, BSE and HWA were
more effective at finding the brain contour for the AD group, the most challenging group to
skull strip. However, 3dIntra was most effective for young normal controls. With respect to
EM Specificity (Fig. 7), 3dIntra demonstrated significantly worse performance in AD relative
to other groups, and BSE tended to perform best across all diagnostic groups (Fig. 7). In
summary, the HWA algorithm most successfully retained “true” brain tissue even within the
AD group (Table V; Fig. 8), whereas BSE resulted in the best specificity across all conditions
(Fig. 7).

DISCUSSION
This collaborative study provides guidance to end-users and developers of automated skull-
stripping applications and demonstrates a quantitative analysis path for the evaluation of
morphometric analysis tools. The investigation examined the effects of bias correction, image
set, slice location, and diagnostic group on automated skull-stripping performance. Bias
correction of field inhomogeneities through the use of N3 [Sled et al., 1998] did not
significantly improve performance of skull-stripping methods. Given that some individual
cases of these 1.5 T data did improve with prior bias correction, bias correction on data from
higher-field strength magnets may have a more significant effect. Performance was, in general,
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better on the Contemporary data relative to the Legacy data with respect to sensitivity, perhaps
due to improved image contrast. As predicted, mesial brain slices proved the most challenging
to skull-strip. These slices included posterior fossa tissue that is often difficult to distinguish
from adjacent brain tissue, as well as voxels containing partially volumed tissues and CSF
(Figs. 2–4). Across all of our performance measures, images from the Alzheimer’s disease
(AD) group proved the most difficult to skull strip.

In general, HWA [Segonne et al., 2004] and BSE [v. 3.3, Sandor and Leahy, 1997; Shattuck
et al., 2001] were more robust across all study conditions relative to 3dIntracranial [Ward,
1999] and BET [Smith, 2002], although the interactions between Method and other conditions
warrant further discussion. It should be noted that BSE’s final outcome purposefully aims to
fit the brain surface and includes the spinal cord as part of the CNS, whereas HWA aims to
conservatively bound the pial surface. Consistent with a recent study [Segonne et al., 2004],
HWA was significantly more sensitive than other methods, resulting in a conservative strip
that rarely removed any brain tissue. HWA preserved much of the subarachnoid space, which
might allow the estimation of cranial vault volume to be incorporated into statistical analyses
controlling for individual differences in head size. However, as with all methods’ results, the
final outcome would likely benefit from additional editing due to the extent of remaining
nonbrain tissue. BSE, in contrast, was more specific, although some brain voxels tended to be
removed, and the final outcomes include some of the same posterior nonbrain regions as in
HWA although to a lesser extent.

The significant interaction between Method and Diagnostic Group supported the robust,
general application of HWA and BSE relative to 3dIntracranial and BET. However, for the
Young Control (YNC) group, 3dIntracranial produced results that were the most similar to the
criterion dataset and tended to be the most specific. As measured by inclusion of nonbrain
tissue (false-positives) and exclusion of brain tissue (false-negatives), 3dIntracranial performed
poorly on the data from the AD group, suggesting that 3dIntracranial may be an appropriate
tool particularly for younger populations. BET also performed less well for both the ENC and
AD data, including neck regions of nonbrain tissue, as in a recent study [Boesen et al., 2004],
and removing some anterior and posterior cortical tissue. BSE and HWA, in contrast, were less
affected by diagnostic group, despite lower similarity coefficients on the YNC data relative to
3dIntracranial. In short, 3dIntracranial performed extremely well when working with young
subject data; however, in the study of older subjects BSE and HWA appeared more promising.
The HWA algorithm demonstrated the highest sensitivity, most successfully retaining brain
tissue even within the AD group, and BSE demonstrated the best specificity in the older groups.

The performance of BSE relative to BET was not easily predictable based on previous studies
of automated application of these methods [Boesen et al., 2004; Lee et al., 2003; Smith,
2002]. Although Lee et al. [2003] and Smith [2002] reported that BET performed better than
BSE, Segonne et al. [2004] suggested that BSE may provide superior results. Boesen et al.’s
[2004] findings suggested that the relative performance of BET and BSE may be influenced
by image quality. The present study differed from previous work in that we employed a more
recent version of the BSE software (v. 3.3), the parameters employed were determined by the
expert developers, and anisotropic filtering was included in the BSE path of the present study,
a processing step not always included in other studies [e.g., Smith, 2002].

Our study focused only on T1-weighted image sets and was limited to rectangular k-space
trajectories. Method performance on other types of image sets may be quite different. As with
3dIntracranial and BSE, BET has the ability to strip other types of image sets and might perform
especially well on T2- or proton-density-weighted image sets not examined herein [Smith,
2002]. Our preliminary work suggests that there are significant challenges to the application
of these methods to spiral trajectories. In addition, the findings reported here are limited to the
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specific groups studied. Given our findings in AD, the characteristics of the AD data that
influenced the performance of these automated methods should be investigated further, and
these algorithms tested on other neurodegenerative groups. Finally, this study provides no
information about region-growing algorithms and other hybrid approaches, which performed
well in previous studies of skull-stripping methods [e.g., Boesen et al., 2004; Lee et al.,
2003].

The comprehensive analysis path employed in the present study provides several quantitative
measures that may be useful to future studies of image processing. The initial JSC analyses
[Jaccard, 1912; Zou et al., 2004a,b] are similar to previously employed statistics. These
provided general information on the amount of overlap between two outcomes, although there
was no specific information as to the sensitivity, specificity, or shape differences that may be
additionally informative. Our estimation of the Hausdorff distance measure [Huttenlocher et
al., 1993] provided information on shape differences between outcomes, although in the present
study the results were similar to the Jaccard findings. When this measure is small the shapes
are similar and almost exactly overlap. When this measure increases the shapes may be quite
dissimilar, despite overlap. Most important to the present work, the use of the Expectation-
Maximization (EM) algorithm [Warfield et al., 2004; Zou et al., 2004b] provided both
sensitivity and specificity indices for the methods examined, including the manual outcomes,
relative to the overall ground truth. This additional information was critical to informing
differences between BSE, a more specific method, and HWA, a more sensitive method, both
of which performed similarly well across diagnostic groups on the other similarity measures.

CONCLUSIONS
Evidence suggests that HWA may remove substantial nonbrain tissue from the difficult face
and neck regions, carefully preserving the brain, although the outcome often would benefit
from further stripping of other nonbrain regions; BSE, in contrast, more clearly reaches the
surface of the brain, although, in some cases, some brain tissue may be removed. 3dIntracranial
and BET often left large nonbrain regions and/or removed some brain regions, particularly in
the older populations. Based on the present findings, further investigations may pursue a skull-
stripping approach that combines methods, either sequentially or in parallel. For example,
HWA simplifies the problem of stripping away nonbrain while proving to be quite sensitive,
and following the application of HWA with BSE may improve the specificity of the final result.
Another approach presented recently [Rex et al., 2003] pursued the possibility of combining
methods within a single meta-algorithm to optimize results. Again, the present study aimed to
examine the automated performance of available skull-stripping methods only on T1-weighted
image sets. All methods examined in the present study permit users to manually optimize
parameters, which may improve performance over values employed herein. These parameter
choices may vary depending on the region of interest to the investigators, as some regions may
be more susceptible to tissue loss with some methods. Furthermore, BSE, BET, and
3dIntracranial are applicable to some other types of image sets (e.g., T2-weighted), and thus
might be significantly advantageous under such circumstances. We hope this study will guide
end-users toward a method appropriate to their datasets, improve efficiency of processing for
large, multisite neuro-imaging studies, and provide insight to the developers for future work.
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Figure 1.
Standard location of the six sagittal, manually stripped slices as demonstrated on a coronal
image. The six sagittal slices represent the criterion dataset; three slices from each hemisphere
in symmetrical locations passing through regions that are difficult to skull-strip. Slices are
numbered for reference. Three sample images are presented in the sagittal plane. Letters
represent difficult regions as referenced in the text.
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Figure 2.
Examples of automatically stripped volumes of a bias corrected, Contemporary YNC dataset.
Sagittal sections are taken near the midline to represent extent of CSF and nonbrain tissue
included in the resulting volumes.
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Figure 3.
Examples of automatically stripped volumes of a bias corrected, Legacy YNC dataset. Sagittal
sections are lateral to the midline and represent the extent of brain tissue retained or excluded
from the resulting volumes.
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Figure 4.
Examples of outcomes for a bias corrected, Contemporary ENC dataset. Each pair of figures
includes solid color overlays on the stripped image (left) and the contours of these shapes
(right). Left, Yellow = regions included in the manual but not in the automatic outcome. Blue
= regions included in the automatic but not in the manual outcome. Right, Yellow = contour
of manually-stripped dataset. Red = contour of automatically stripped dataset.
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Figure 5.
Mean (std. error bars) Jaccard similarity coefficient (JSC) for Diagnostic Group by Method
relative to the manually stripped slices from Anatomist 1. Mean JSC for the two manual raters
(0.938) is represented by the horizontal dashed black line.
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Figure 6.
Mean (std. error bars) Hausdorff distance for Diagnostic Group by Method relative to the
manually stripped slices from Anatomist 1. Mean Hausdorff distance for the two manual raters
(5.5) is represented by the horizontal dashed black line.
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Figure 7.
Mean Specificity from the Expectation-Maximization (EM) analysis by Diagnostic Group for
each Method.
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Figure 8.
Mean Sensitivity from the Expectation-Maximization (EM) analysis by Diagnostic Group for
each Method.
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TABLE I
Dataset information

Diagnostic group/Image set Age, mean (SD) Gender MMSE, mean (SD)

Young Controls
 Legacy 35.5 (13.5), range 25–54 2F/2M N / A
 Contemporary 33.0 (15.1), range 21–54 2F/2M N / A
Elderly Controls
 Legacy 75.0 (2.2), range 72–77 2F/2M N / A
 Contemporary 74.5 (1.7), range 72–76 2F/2M N / A
Unipolar Depressed
 Legacy 40.5 (13.3), range 28–56 3F/1M N / A
 Contemporary 40.8 (10.8), range 21–54 3F/1M N / A
Alzheimer’s Disease
 Legacy 76.0 (2.7), range 72–78 2F/2M 23.0 (2.7), range 21–27
 Contemporary 75.5 (1.7), range 72–78 1F/3M 23.2 (2.5), range 22–27

N / A, not available.
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TABLE II
Statistically significant main effects and interactions for Jaccard similarity coefficient (JSC) analyses

F P Partial η2

Anatomist 1
 Slice F(4.9,118.2) = 12.2 <30.001a 0.34
 Slice by image set F(4.9,118.2) = 9.2 <0.001a 0.28
 Diagnostic group F(3,24) = 7.9 0.001b 0.50
 Method F(3,72) = 3.4 0.023d 0.12
 Method by slice F(4.3,103.2) = 8.1 <0.001a 0.25
 Method by diagnostic group F(9,72) = 2.8 0.007c 0.26
Anatomist 2
 Slice F(4.8,114.0) = 13.3 <0.001a 0.36
 Slice by image set F(4.8,114.0) = 11.8 <0.001a 0.33
 Diagnostic group F(3,24) = 8.6 <0.001a 0.52
 Diagnostic group by slice by image set F(14.3,114.0) = 2.1 0.017d 0.21
 Method F(3,72) = 3.3 0.026d 0.12
 Method by slice F(4.5,107.1) = 8.0 <0.001a 0.25
 Method by slice by image set F(4.5,107.1) = 2.8 0.023d 0.11
 Method by diagnostic group F(9,72) 3 3.0 0.004b 0.27

Automated methods were compared to manually stripped slices for each anatomist. Boldface type indicates that findings were significant for only one
anatomist.

a
P < 0.001;

b
P < 0.005;

c
P < 0.01;

d
P < 0.05.
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TABLE III
Statistically significant main effects and interactions for Hausdorff distance analyses

F P Partial η2

Anatomist 1
 Slice F(4.1,98.4) = 23.0 <0.001a .49
 Diagnostic group F(3,24) = 4.8 0.010c .37
 Method by diagnostic group F(9.0,72.0) = 2.1 0.037c .21
Anatomist 2
 Slice F(3.9,93.2) = 24.1 <0.001a .50
 Diagnostic group F(3,24) = 4.8 0.009b .38
 Method by diagnostic group F(9.0,72.0) = 2.1 0.037c .21

Automated methods were compared to manually stripped slices for each anatomist.

a
P < 0.001;

b
P < 0.01;

c
P < 0.05.
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TABLE IV
Statistically significant main effects and interactions for EM analyses of Sensitivity and Specificity

F P Partial η2

Sensitivity
 Slice F(3.1,73.7) = 5.4 0.002b 0.18
 Image set F(1,24) = 8.3 0.008c 0.26
 Slice by image set F(3.1,73.7) = 6.3 0.001b 0.21
 Diagnostic group F(3,24) = 5.1 0.007b 0.39
 Method F(2.6,63.0) = 12.1 <0.001a 0.33
 Method by image set F(2.6,63.0) = 5.0 0.005c 0.17
 Method by slice F(3.3,78.1) = 4.3 0.006c 0.15
 Method by image set by slice F(3.3,78.1) = 2.9 0.04d 0.11
Specificity
 Slice F(3.5,83.7) = 40.1 <0.001a 0.63
 Slice by image set F(3.5,83.7) = 3.3 0.018d 0.12
 Diagnostic group F(3,24) = 3.3 0.036d 0.30
 Method by slice F(6.6,159.1) = 10.7 <0.001a 0.31
 Method by diagnostic group F(8.1,64.5) = 2.6 0.017d 0.24
 Method by diagnostic group by slice F(20.0,159.1) = 1.7 0.032d 0.18

All methods, including manual stripping, were treated similarly.

a
P < 0.001;

b
P < 0.005;

c
P < 0.01;

d
P < 0.05.
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TABLE V
Coefficients for Jaccard similarity (JSC) and Hausdorff distance for each method as they relate to the manually
stripped slices, and expectation-maximization (EM) estimates of Sensitivity and Specificity

3dIntra BET BSE HWA

Jaccard similarity (JSC)
 Anatomist 1 0.802 (0.029) 0.787 (0.014) 0.863 (0.019) 0.855 (0.015)
 Anatomist 2 0.809 (0.027) 0.796 (0.014) 0.865 (0.019) 0.865 (0.015)
Hausdorff distance
 Anatomist 1 26.2 (5.4) 23.1 (2.4) 20.5 (5.2) 14.7 (2.8)
 Anatomist 2 24.6 (5.3) 22.2 (2.4) 19.9 (5.2) 14.6 (2.8)
Expectation–maximization (EM)
 Sensitivity 0.914 (0.015) 0.925 (0.015) 0.937 (0.005) 0.996 (0.001)
 Specificity 0.953 (0.017) 0.964 (0.003) 0.975 (0.010) 0.951 (0.008)

Values are expressed as mean (standard error).

Each mean represents method performance averaged across all other conditions. Data from both anatomists is presented where relevant.

Main effect of method was significant for JSC and EM Sensitivity.
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