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The surface of the human cerebral cortex is a highly
olded sheet with the majority of its surface area
uried within folds. As such, it is a difficult domain for
omputational as well as visualization purposes. We
ave therefore designed a set of procedures for modify-

ng the representation of the cortical surface to (i)
nflate it so that activity buried inside sulci may be
isualized, (ii) cut and flatten an entire hemisphere,
nd (iii) transform a hemisphere into a simple param-
terizable surface such as a sphere for the purpose of
stablishing a surface-based coordinate system. r 1999

cademic Press

Key Words: Cortical surface reconstruction, flatten-
ng, coordinate systems, atlas.

1. INTRODUCTION

Currently, the most widely used method of analyzing
unctional brain imaging data is to project the func-
ional data from a sequence of slices onto a standard-
zed anatomical 3-D space. The most common of these
rocedures is based on the Talairach atlas (Talairach et
l., 1967; Talairach and Tournoux, 1988; see, e.g.,
ollins et al., 1994, for an automated procedure). While

his type of approach has certain advantages (ease of
se, widespread acceptance, applicability to subcortical
tructures), it also has significant drawbacks.
These drawbacks derive from the fact that the intrin-

ic topology of the cerebral cortex is that of 2-D sheet
ith a highly folded and curved geometry. Estimates of

he amount of ‘‘buried’’ cortex range from 60 to 70%
Zilles et al., 1988; Van Essen and Drury, 1997), imply-
ng that distances measured in 3-D space between two
oints on the cortical surface will substantially under-
stimate the true distance along the cortical sheet,

1 To whom correspondence and reprint requests should be ad-

ressed. Fax: (617) 726-7422. E-mail: dale@nmr.mgh.harvard.edu.
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articularly in cases where the points lie on different
anks of a sulcus.
From a functional standpoint, nonhuman primate

eocortex is composed of a mosaic of visual, auditory,
omatosensory, and motor areas, with visual areas
lone occupying more than half of the total cortical
urface area (Felleman and Van Essen, 1991; Kaas and
rubitzer, 1991; Sereno and Allman, 1991). The bulk of

he remaining half is composed of auditory, somatosen-
ory, motor, and limbic areas, each occupying about 1⁄8 of
he total neocortex (Morel and Kaas, 1992; Stepniewska
t al., 1993).
The majority of these areas are defined by their

opographic maps of the sensory periphery (e.g., retino-
opic, tonotopic, somatotopic). Typically, the metric
ncoding the relationship between these maps and the
ensory periphery which they represent is not known
see, Schwartz, 1977, 1980, for a notable exception).
owever, the two-dimensional nature of the maps as
ell as their topographic arrangement strongly suggest

hat a two-dimensional surface-based metric is more
ppropriate for analyzing their functional properties
han the more typically used volume-based metrics.

The highly folded nature of the cortical surface also
akes it difficult to view functional activity in a
eaningful way. The typical means of visualization of

his type of data is the projection of functional activa-
ion onto a set of orthogonal slices. This procedure is
roblematic as regions of activity which are close
ogether in the volume may be relatively far apart in
erms of the distance measured along the cortical
urface. In addition, the naturally two-dimensional
rganization of cortical maps is largely obscured by the
mposition of an external coordinate system in the form
f orthogonal slices. These problems have led an increas-
ng number of studies to make use of surface-based
echniques for visualization (Tootell et al., 1995; DeYoe
t al., 1996; Engel et al., 1997; Reppas et al., 1997;

Talavage et al., 1997; Van Essen and Drury, 1997;

Hadjikhani et al., 1998; Moore et al., 1998).
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196 FISCHL, SERENO, AND DALE
In order to facilitate the use of surface-based tech-
iques for both display and analysis of structural and
unctional properties of the cerebral cortex, we have
eveloped a unified procedure which begins with a
reviously reconstructed cortex (Dale and Sereno, 1993;
ale et al., 1998) and modifies it in order to achieve

hree separate but related goals:
(1) The ‘‘inflation’’ of the cortical surface so that

ctivity occurring inside sulci may be easily visualized.
(2) The flattening of an entire hemisphere so that the

ctivity across the hemisphere may be seen from a
ingle view, and so that computational procedures
hich are not tractable on arbitrary manifolds may be
mployed in the analysis of the cerebral cortex.
(3) The ‘‘morphing’’ of a hemisphere into a surface,
hich maintains the topological structure2 of the origi-
al surface, but has a natural (i.e., closed-form) coordi-
ate system.
Using the methods described in this paper we have

een able to map out the detailed topographic organiza-
ion of human retinotopic visual areas (Sereno et al.,
995; Tootell et al., 1996a,b, 1997, 1998a,b), the tono-
opic structure of primary auditory cortex (Talavage et
l., 1996, 1997a,b, 1998a,b), the topography of primary
omatosensory cortex (Moore et al., 1997, 1998; Moore,
998), as well as areas involved in the processing of
isual motion (Tootell et al., 1995; Reppas et al., 1997;
ulham et al., 1998), color (Hadjikhani et al., 1998),
erception of faces and objects (Halgren et al., 1998),
nd processing the meaning of words (Halgren et al.,
998). In addition, the cortical surface reconstruction
as been used to constrain the EEG/MEG inverse
roblem (Dale and Sereno, 1993; Liu et al., 1996; Liu et
l., 1998a,b). The cortical surface reconstruction, visu-
lization, and analysis tools described here and in a
ompanion article (Dale et al., 1998) are based on the
ethods previously described by Dale and Sereno

1993).

2. MAPPING OF THE CORTICAL SURFACE
TO PARAMETERIZABLE SHAPES

Because of the varying intrinsic curvature of the
ortical surface it is not possible to map it onto other
ignificantly smoother surfaces (such as planes or
pheres) without introducing some metric and/or topo-
ogical distortion into the surface representations (do
armo, 1976). A mapping between two surfaces with no
etric distortion is called an isometry. Finding such a
apping from the sphere to the plane has been called

2 The term topological structure is frequently used to refer to the
order of a domain as opposed to its global topology (Mortenson,
997). For example, once an incision has been made in the cortical
urface it is topologically equivalent to a plane. Further incisions
lter its topological structure, but not its topology (unless they result
mn multiple disconnected components).
the mapmaker’s problem and was shown to be impos-
sible by Gauss (1828), as the surfaces in question have
differing intrinsic (or Gaussian) curvature. Neverthe-
less, for representations to be useful for either visualiza-
tion or computational purposes, metric distortion must
be minimized. Toward that end, we have developed a
general procedure for minimizing metric distortion in a
variety of contexts, such as surface inflation, flattening,
as well as mapping to other parameterizable surfaces
such as a sphere.

Constructing this type of mapping is a difficult task
due to the complex and highly folded nature of the
original surface, which requires a fine-scale tessella-
tion in order to capture its metric and topological
properties. One attractive means of flattening the
surface is the method employed by Schwartz and
colleagues (Schwartz and Merker, 1986; Schwartz et
al., 1989; Wolfson and Schwartz, 1989), in which the
matrix of distances of each vertex to all other vertices is
constructed in order to represent the metric properties
of the original surface. The surface is then randomly
projected onto a plane and unfolded in such a way as to
minimize the mean-squared error between the original
distance matrix and that of the flattened surface. While
this method is more than adequate for flattening small
patches of the cortical surface, such as primary visual
cortex to which it was originally applied, the computa-
tional requirements of the procedure in terms of both
memory and time become prohibitive as the patch size
grows.

A different type of method was employed by Dale and
Sereno (1993), and later by Carman et al. (1995) as well
as Drury and Van Essen (Drury et al., 1996; Van Essen
nd Drury, 1997; Van Essen et al., 1998). In this
pproach, a variety of local forces are constructed in
rder to encourage the preservation of local area and
onformality (i.e., angle), while also forcing the surface
o unfold onto a plane. These techniques have been
uccessfully applied to entire cortical hemispheres, but
uffer from a number of drawbacks. First, they require
he use of terms such as a spring force in order to
liminate folds, which results in surfaces that are not
ptimal with respect to the preservation of any metric
roperty. In addition, they treat the vertices on the
orders of the flattened surface differently than those
n the interior, thus constraining the shape of the
esulting surface. Finally, they preserve only local
roperties of the surface and therefore do not rule out
arge-scale distortions caused by locally correlated er-
ors, although the use of multiresolution techniques
ddresses this concern to some degree.
Part of the problem with applying the Schwartz
ethod is that relatively long-range distances must be

ccounted for in order to unfold patches of cortex which
ave been folded by the projection process. They esti-

ate that a procedure incorporating distance con-
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197CORTICAL SURFACE-BASED ANALYSIS II
traints on the order of 1 cm suffices to unfold monkey
1 (Schwartz et al., 1989). Unfortunately, the distance
equired to smooth out a fold grows with the size of the
urface (and the fold), quickly requiring untenable
emory usage. Using a random subsampling of the

istance matrix alleviates this problem to some extent,
ut not to the degree required to flatten an entire
ortical hemisphere.
This problem occurs because distances are unori-

nted, and therefore mirror image configurations repre-
ent local minima in the energy functional. To see this,
magine a piece of paper folded exactly along a string of
ertices. If only nearest neighbor distances are being
reserved, this represents an optimal configuration
ith the same energy as the completely unfolded state.
he inclusion of neighborhoods which are small rela-
ive to the size of the entire sheet will not aid the
roblem, as the majority of the nodes on the surface are
hen beyond the neighborhood of the fold. This type of
ituation thus represents a local minimum, as moving
ertices along the fold will increase the metric error
ntil the rest of the surface expands. In order to cause
he surface to unfold, a sufficient number of vertices
ust be included in the distance matrix so that the

ecrease in error caused by removing the fold more
han offsets the increase in error of the region outside
he fold, a solution that is not viable for as complex and
arge a surface as an entire cortical hemisphere.

We therefore construct a means of encouraging the
urface to unfold which satisfies three criteria: (1) The
nal surface should be optimal with respect to minimiz-

ng metric distortion. (2) The borders of the cut surface
hould be treated no differently than the interior. (3)
he resulting surface should have only minimal fold-

ng.
The first two criteria exclude the use of spring terms

o ‘‘regularize’’ the mesh, which are typically introduced
n order to prevent folding. Instead, we construct an
nergy functional that employs only a distance term for
nfolded or positive regions of the surface, but applies
n additional term to folded or negative regions in
rder to cause the surface to unfold. This term makes
se of the embedding space to give the normal vector
eld of the surface a consistent orientation (positive z in
he plane, radially outward on the sphere). Any tri-
ngles in the tessellation for which the ordered cross-
roduct of its legs is antiparallel to the normal direction
s then assigned a negative area.3 Constraining the
rea to be positive everywhere eliminates folds in the
urface.
The spherical and flattening transformations thus

roceed as follows. First, geodesic distances are esti-
ated on the original (folded) surface, after the intro-

3 This oriented area term can be seen as the determinant of the

acobian matrix of the transformation. a
uction of cuts in the flattened case. Note that after the
urface has been cut, only the remaining vertices are
onsidered in the distance calculations. Next, the corti-
al manifold is projected onto the target surface and
ssigned a normal vector field with a consistent orienta-
ion (the inflation procedure does not require a projec-
ion step as the energy functional used in the inflation
rocess contains a term which drives the surface to-
ard the target configuration). The potentially large

olds and metric distortions introduced by the projec-
ion process are then removed by minimizing an energy
unctional, which contains terms representing these
wo factors separately. The resulting surfaces have
ssentially no remaining folds and only minimal metric
istortion.

.1. Minimizing Metric Distortions

The term that minimizes metric distortions is con-
tructed as follows. Consider a mesh of V vertices
istributed irregularly over a surface S embedded in a
-D Cartesian space. Denoting the distance between
he ith and jth vertices at iteration number t of the
umerical optimization procedure by dij

t , we construct a
ean-squared energy functional Jd:

Jd 5
1

4V o
i51

V

o
n[N(i)

(din
t 2 din

0 )2, din
t 5 \xi

t 2 xn
t \ (1)

here xi
t is the (x, y, z) position of vertex i at iteration

umber t, din
0 is the distance between the ith and nth

ertices on the original cortical surface before projec-
ion, and N(i) is the set of vertices defined to be in the
eighborhood of vertex i.4 Taking the partial derivative
f Jd with respect to the kth vertex results in

­Jd

­xk
5

1

V o
n[N(k)

(dkn
t 2 dkn

0 )ekn, (2)

here ekn is a unit vector pointing from vertex k to
ertex n. This term is similar to the ‘‘longitudinal’’ one
mployed by Carman et al. (1995), except here it is
dentified as the gradient of a well-defined energy
unction, and the distances we employ are along signifi-
ant sections of the manifold, as opposed to simply
epresenting the spacing of the mesh.

.2. Long Range-Distance Calculation

The problem of computing geodesic distances on an
rbitrary manifold is a difficult one. One solution is to

4 The 1
4 scaling factor removes the factor of 2 introduced by taking

he derivative of the quadratic distance term as well as an additional
actor of 2 that accounts for all the symmetric terms in which xk

ppears as a neighbor of another vertex.
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198 FISCHL, SERENO, AND DALE
se the faces of the polyhedral approximation to com-
ute the exact geodesic distances, as suggested by
olfson and Schwartz (1989). Unfortunately, the time

equirements of this algorithm are exponential in the
umber of triangles in the tessellation, which makes it
omputationally untenable if millimeter resolution is
esired for the surface. While decimation techniques
ay be employed to reduce the size of the surface

epresentation, it is not clear that the reduction would
e sufficient to make the use of this algorithm feasible,
s on the order of 300,000 triangles are required to
over a typical human cortex and single millimeter-
ized structures are common.
A simpler technique that is computationally trac-

able is to take a dynamic programming approach to
he calculation of distances and employ an algorithm
ypically used to calculate minimal distances in a graph
Dijkstra, 1959). Here we modify it slightly, as the
raph in question is the tessellation of the cortical
urface. This requires a minor correction in the form of
scaling factor, so that the distance estimates on the

ortical manifold are essentially unbiased with respect
o the geodesic distances.

The Dijkstra algorithm for computing distances pro-
eeds as follows. For each vertex we label each of its
earest neighbors as 1-neighbor and compute the Eu-
lidean distance from them to the central vertex. We
hen label each neighbor of a 1-neighbor that is not
lready labeled (and is not the central vertex) as a
-neighbor. Next, we examine the neighbors of each
-neighbor and find the one with the shortest distance
o the central vertex. We then compute the distance to
he 2-neighbor as the distance of the optimal neighbor
lus the length of the edge connecting them. This
rocedure is then applied iteratively with the neighbor-
ood size expanding at each iteration. One point to note

s that the resulting distances are similar to a Manhat-
an metric in that they typically overestimate the
eodesic distance. In order to alleviate this problem we
cale the resulting distances by ((1 1 sqrt(2))/2). This
orrection factor results in an estimate which is essen-
ially zero mean,5 with the variation from the true
istance acting as white noise, a factor we will show is
egligible in section 6.

.3. Unfolding Using Oriented Area

As noted previously, causing the surface to unfold
sing only a distance term is not feasible for large
urfaces. This is due to the fact that mirror-image
onfigurations are not directly penalized, resulting in
olded states that are local minima of the energy

5 The scaling factor we use is representative of the rectangular
ature of the tessellation, as it is constructed directly from voxel

aces. A different scaling factor is required for other tessellation

echniques. M
unctional. These local minima are caused by the
nherently unoriented nature of distances that do not
xplicitly distinguish between folded and unfolded
tates. In order to resolve this problem, we therefore
eek an oriented metric property that discourages folds
n the surface. The two obvious candidates are confor-

ality and areal terms. While both can be employed
uccessfully in this context, the use of an angle term
esults in a gradient that is dependent on the square of
he inverse of the vertex spacing and is therefore
omewhat numerically unstable. In contrast, the use of
n oriented area results in a quadratic energy func-
ional.

In order to define the areal term of the energy
unctional we consider the ith triangle in the surface
essellation depicted in Fig. 1, with unit normal vector
i and edges ai and bi connecting the vertex xi to two of

ts neighbors (note that bold-faced symbols denote
ector quantities). The unit normal ni is given on the
riginal manifold by the normalized cross product of
he edges ai and bi, while the area of the triangle is half
he cross product of ai and bi dotted with the unit
ormal (i.e., the triple scalar product). However, for
ther representations such as spherical and flattened,
he normal vector field can be given a consistent
rientation on the surface6 using the embedding space,
nd Ai becomes an oriented area, which may take on
egative values, indicating folds in the surface.
Given this description of the metric properties of the

urface through the triangular tessellation, we form an
nergy functional Ja that penalizes negative area in
roportion to the difference between the current area
nd the original area occupied by each triangle:

a 5
1

2T o
i51

T

P(Ai
t)(Ai

t 2 Ai
0)2, P(Ai

t) 5 51, Ai
t # 0

0, otherwise,
(3)

here, as before, superscripts denote time, with 0 being
he areal values on the original cortical surface, T
efers to the number of triangles in the tessellation, and
he functional dependence of the Ais on the position of

6 This is always possible except in pathological cases such as the

FIG. 1. Metric properties of the triangular tessellation.
öbius strip which are said to be nonorientable (do Carmo 1976).
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199CORTICAL SURFACE-BASED ANALYSIS II
he vertex and its neighbors has been suppressed for
implicity of notation. This term ensures that the
ransformation is one-to-one and therefore has a well-
efined inverse, by preventing folds in the surface
hich would represent the mapping of multiple points

o the same location in the embedding coordinate
ystem.
In order to minimize Ja, we take the gradient with

espect to the vertex positions xk:

­Ja

­xk
5

1

T o
i51

T

(Ai
t 2 Ai

0)
­Ai

t

­xk
. (4)

xpanding the partial derivative using the chain rule
ields:

Ai
t

xk
5

­Ai
t

­ai

­ai

­xk
1

­Ai
t

­bi

­bi

­xk
,
­Ai

t

­ai
5 bi 3 ni

­Ai
t

­bi
5 ni 3 ai. (5)

he partials of the change in the legs with respect to a
hange in the vertex position are dependent on what
osition the vertex in question occupies in a given
riangle:

­a
i

xk
5 5

[21,21,21]T, k 5 i

[1,1,1], k 5 l

0, otherwise

,
­bi

­xk
5 5

[21,21,21]T, k 5 i

[1,1,1], k 5 j

0, otherwise,

(6)

.4. The Complete Energy Functional

The complete energy functional incorporating both
istance and areal terms is given by

J 5 ldJd 1 laJa, (7)

here the la and ld coefficients define the relative
mportance of unfolding versus the minimization of

etric distortions respectively. Initially, la takes on
alues much larger than ld, and gradually decreases
ver time as the surface successfully unfolds. One
dditional point to note is that we smooth the gradients
sing iterative averaging during the numerical integra-
ion. This allows entire regions that are compressed or
xpanded to move coherently in the appropriate direc-
ion, and is similar to decimation followed by upsam-
ling with interpolation. We allow each scale (defined
y the number of iterations in the averaging) to equili-
rate before reducing the scale and continuing. The
ctual minimization of J(x) is accomplished using
radient descent with line minimization (Press et al.,
994), as detailed in the appendix.

3. SURFACE INFLATION

The high degree of folding of the cortical surface

akes it desirable to inflate the reconstructed surface b
or visualization purposes (Dale and Sereno, 1993).
his renders the interior of sulci visible, as well as
aking the surface-based distance between regions
ore apparent to visual inspection. The purpose of the

urface inflation is thus to provide a representation of
he cortical hemisphere that retains much of the shape
nd metric properties of the original surface, but allows
he visualization of functional activity occurring within
ulci. For this purpose, we define an energy functional,
he minimization of which results in the desired shape.
his functional consists of two terms, a spring force
hich smooths the surface, and the metric-preserva-

ion term described in Section 2.1, which constrains the
volving surface to retain as much of the original metric
roperties as possible:

Js 5
1

2V 1o
i51

V

o
n[N1(i)

\xi 2 xn \22 1 ldJd, (8)

here Nl denotes the set of nearest neighbors of each
ertex, Jd is as defined in Section 2.1, and a value of 0.1
or the coefficient ld yields smooth surfaces with mini-
al metric distortion. Larger values of ld result in

educed metric distortion at the cost of generating less
mooth surfaces.
We use Euler’s method with momentum to integrate

s until the surface has achieved a desired smoothness
s measured by the goodness-of-fit of the polyhedral
pproximation.7 Note that, in contrast to the flattening
nd spherical transformation, the surface inflation
oes not require a projection step, as the spring term
erves to drive the surface toward the desired smoother
onfiguration.
One further point to note is that the inflation process

s driven by the average convexity or concavity of a
egion. That is, points which lie in concave regions
ove outwards over time, while points in convex re-

ions move inwards. Thus, integrating the normal
ovement of a point during inflation provides a mea-

ure of average convexity or concavity at that point.
ormally, the average convexity C(xk

0) at position xk on
he original surface is given by:

C (xk
0) 5 e 1

­Js

­xk
t

· n(k)2 dt, (9)

here n(k) is the unit normal vector to the surface at
he kth vertex in the tessellation at time t. Vertices that
onsistently move outwards, or parallel to the normal
irection, will have a large positive value of C, while

7 We integrate the inflation functional until the normalized aver-
ge distance of the neighbors of each vertex from its tangent plane is

elow a prespecified threshold.
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200 FISCHL, SERENO, AND DALE
oints that move antiparallel to the normal will be
ssigned large negative values.
The average convexity is useful for quantifying the

olding pattern of a surface, as C captures large-scale
eometric features, while being relatively insensitive to
he small folds that typically occur on the banks of a
ulcus. This is in contrast to mean curvature which
ttains equally high values for small secondary and
ertiary folds in a surface as for the primary folds.
igure 3 illustrates this difference between the mean
urvature of the folded cortex (left) and the average
onvexity as quantified by C (right), painted onto both
he gray/white matter (top), and inflated (bottom) sur-
aces. Note how accurately the average convexity repre-
ents only the primary folding patterns. The major
natomical features of this surface, such as the central
ulcus (CS), superior temporal sulcus (STS), intrapari-
tal sulcus (IPS), and sylvian fissure (SF), are clearly
isible, while the secondary and tertiary folding pat-
erns apparent in the mean curvature are largely
bsent. In our standard analysis procedure we use C as
means for quantifying the folding pattern of a surface
s it is insensitive to noise in the form of small wrinkles
n a surface and relatively stable across individuals
see Fischl et al., 1998).

4. FLATTENING

In order to flatten a cortical hemisphere with mini-
al distortion we make a number of cuts on the medial

spect of the original surface—one in a region around
he corpus callosum to remove all midbrain structures,
ne down the fundus of the calcarine sulcus, a set of
qually spaced radial cuts, as well as a sagittally
riented cut around the temporal pole (see Fig. 4). This
attern of cuts removes most of the intrinsic curvature
f the surface, allowing it to be flattened with only
inor distortion, while preserving the topological struc-

ure of the lateral aspect of the surface. Several alterna-
ive cutting schemes have been suggested by others
DeYoe et al., 1996; Drury et al., 1996). The optimal
hoice of cuts depends on which parts of the surface one
s most interested in preserving for a particular applica-
ion. For example, in our standard analysis of visual
ata, we make a planar cut that detaches the posterior
art of the brain including all of the occipital lobe, and
arts of the parietal and temporal lobes. We then
ntroduce a cut down the fundus of the calcarine sulcus,
hich separates the upper and lower visual fields of the

etinotopic areas and removes most of the intrinsic
urvature of the remaining surface. Currently, the
urface cuts are made manually by a trained operator,
ased on anatomical landmarks. In the future, it
hould be possible to automate the cutting process, by

pecifying the coordinates of the cuts in a surface-based 2
oordinate system (Fischl et al., 1998; Thompson et al.,
998; Sereno et al., 1996; Van Essen et al., 1997).
Once the desired cuts have been made, we project the

esulting surface onto a plane whose normal is given by
he average surface normal of the cut surface (that is,
he portion of the original surface which remains after
he cutting process). After the projection has been
ccomplished, we give the flattened surface a consis-
ent orientation by setting the normal vector field to
0,0,1]T and allow the surface to unfold by minimizing
he energy given in Section 2.4, using angularly spaced
andomly sampled distances in a 0.8 cm radius of each
ertex as the neighborhood N(i).8 The result of this
rocedure is shown in Fig. 5, which depicts three
attened left hemispheres.

5. SPHERICAL TRANSFORMATIONS AND A
SURFACE-BASED COORDINATE SYSTEM

Identifying corresponding points on different cortical
urfaces requires the establishment of a uniform sur-
ace-based coordinate system (Drury et al., 1996; Sereno
t al., 1996; Thompson et al., 1996; Thompson and Toga,
996; Davatzikos, 1997; Van Essen and Drury, 1997;
ischl et al., 1998). This is in contrast to volume-based
oordinate systems in which a point on the cortical
urface in one volume will typically not lie on the
ortical surface of a different volume. In order to
stablish a surface-based coordinate system, we trans-
orm the reconstructed cortical surface into a parameter-
zable surface, as the parameterization then provides a
atural coordinate system. The surface we choose for
his purpose is a sphere for a number of reasons. This
hoice is primarily motivated by the fact that the
apping of the cortical hemisphere onto a sphere

llows the preservation of the topological structure of
he original surface (i.e., the local connectivity). This is
n contrast to the use of a flattened surface, which
equires cuts to be introduced prior to flattening in
rder to minimize distortion. These cuts change the
opological structure of the surface, resulting in points
n opposite sides of a cut, which are close to each other
n the original cortical surface, becoming quite far
part in the final flattened representation. The choice
f the sphere also allows us to retain much of the
omputational attractiveness of a flat space, facilitat-
ng the calculation of metric properties such as geodesic
istances, areas, and angles, properties that are more
ifficult to compute on less symmetric surfaces such as
llipsoids.

8 At each distance we enforce a minimal angular spacing between
he sampled points. This spacing is based on the number of neighbors
elected at each extent. For the flattening we sample 8 points at each
istance out to 8 cm, forcing the points to be separated by as close to

p/8 radians as possible.
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201CORTICAL SURFACE-BASED ANALYSIS II
The process of unfolding the cortical surface on a
phere is identical to the flattening procedure outlined
n Section 4, except that distances on the sphere are no
onger Euclidean, but rather must be computed using
he geodesics of the sphere. In the spherical case, we
ive the surface a consistent orientation by using an
utwards pointing normal vector field:

ni 5
xi

\xi \
(10)

here xi refers to the vector from the center of the
phere to the ith vertex. In addition, the lack of freedom
o modify the shape of the unfolding surface necessi-
ates the use of longer range distances than in the case
f the flattening. In order to generate the spherical
epresentation, we first project the inflated cortical
urface onto the unit sphere by moving each vertex in
he tessellation of the inflated surface to the closest
oint on the sphere. Next, we allow the surface to
nfold by minimizing the metric distortions introduced
y the inflation and projection procedures. These distor-
ions are estimated based on an angularly spaced
andom sampling of distances in a 1-cm radius of each
ertex. The surface is projected back onto the sphere at
ach step in the minimization procedure. Figure 6
llustrates the result of applying this procedure to three
ortical hemispheres.
Once the spherical representation has been estab-

ished, we can use any of the standard spherical
oordinates systems (e.g., longitude and colatitude) to
ndex a point on any of the surface representations for a
iven subject (Fig. 7). Furthermore, in other work
Sereno et al., 1996; Fischl et al., 1998), we have
eveloped a procedure for aligning cortical hemi-
pheres with an average surface, based on the average
onvexity measure C defined by Eq. (9). By maximizing
he correlation of the convexity measure between the
ndividual and the average, the procedure computes an
ptimal mapping to a ‘‘canonical’’ surface and hence a
urface-based coordinate system. This type of surface-
ased approach, which a number of groups are working
n (Drury et al., 1996, 1997; Thompson et al., 1996;
hompson and Toga, 1996; Davatzikos, 1997), can

ncrease the accuracy of localizing anatomically consis-
ent functional areas by a factor of three over volume-
ased techniques (Fischl et al., 1998), as well as provid-
ng a means for high-resolution intersubject averaging
f functional data occurring on the cortical surface.

6. ERROR ANALYSIS

There are a number of concerns which must be
ddressed in regard to using the corrected Dijkstra
lgorithm as an estimator of geodesic distances. The

ost important of these concerns the accuracy of the
etric properties of surfaces flattened using these
istances. Another consideration is to what degree
hese surfaces diverge from surfaces flattened using
rue geodesic distances as targets. A third question is in
egard to the accuracy of the flattening procedure
pplied to surfaces which contain varying amounts of
ntrinsic curvature.

In order to assess these issues, we flattened a set of
urfaces for which analytic geodesic distance expres-
ions exist, namely a plane and various portions of a
phere. The entire set of surfaces were flattened twice,
nce using the corrected Dijkstra distances as targets,
nd once with the targets computed using the true
eodesic distances. The results of this analysis are
epicted in Fig. 8. The x-axis in this plot is a measure of
he curvature of the original surfaces, beginning with a
lane at the far left (x 5 0), and proceeding to increas-
ng portions of a sphere, with a full hemisphere at the
ar right (x 5 50%). The y-axis represents the percent-
ge distance error of the flattened surfaces, measured
sing analytic expressions for geodesics on the original
urfaces (great circles on the sphere and Cartesian
istances in the plane). The solid line in this figure is a
lot of distance error versus curvature for the surfaces
attened using the corrected Dijkstra distances, while
he dotted line depicts the distance error for the same
urfaces flattened using the actual geodesic distances
s targets. As can be seen, the difference between the
wo is small (the maximum difference is 1.37%), indicat-
ng the overall accuracy of the flattening procedure.
urthermore, the convergence of the plots indicates the

nsensitivity of the corrected Dijkstra distances, as well
s the flattening procedure in general, to increasing
urvature. The difference in percentage distance error
or the two flattened hemispheres is less than 0.35%,
uggesting that the error is dominated by the unavoid-
ble distortions introduced by flattening a curved sur-
ace, rather than inaccuracies resulting from the use of
he corrected Dijkstra distances as targets.

Finally, we present the errors of the flattening and
pherical transformation on a set of 10 human hemi-
pheres. All percentages in this section are computed
sing an L1 norm as it is less sensitive to outliers than
he L2 norm. The transformation of the cortex into a
phere results in the largest metric distortion
19.4 6 0.67%), presumably due to the lack of freedom
o manipulate the borders on the closed shape. The
attening of the entire hemisphere gives rise to signifi-
antly smaller distortion (11.7 6 0.42%), while the flat-

tening of the posterior third of cortex, useful for analyz-
ing visual areas, results in the smallest average
distortion (9.6 6 0.65%). The spatial distribution of
metric distortions introduced by the flattening and
spherical transformations are shown in Figs. 9 and 10,
respectively, together with a histogram of the distor-

tions in Fig. 11. The regions of high distortion for the
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FIG. 2. Inflated representations of the three cortical surfaces (sul
FIG. 3. Mean curvature (left) and average convexity (right) painte

ubject’s cortical surface.
FIG. 4. Medial view of an inflated surface after the introduction o
ci are red and green are light).
d onto folded (top) and inflated (bottom) representations of an individual

f cuts. Yellow regions indicate the borders of the cut surface.
202
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FIG. 5. Three flattened left hemispheres (sulci are red and green
FIG. 6. Lateral view of three left hemispheres after spherical tran
FIG. 7. Spherical coordinate system painted onto a variety of surf
are light).
sformation.
ace representations.

FIG. 9. Spatial distribution of metric distortion introduced by the flattening, painted onto flattened (left), and inflated (right)
epresentations (top—lateral view, bottom—medial view).
203
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204 FISCHL, SERENO, AND DALE
attening are largely confined to the borders of the cut
urface, with the interior having a relatively uniform
mall degree of distortion. The spherical transforma-
ion results in higher distortion, but this too is mainly
onfined to noncortical regions such as the lateral
entricle and the basal ganglia, where the surface is
omewhat arbitrary. Thus, the actual mean error for
ortical regions is probably a few percent lower than
he numbers cited above, as evidenced by the mode of
he two histograms in Fig. 11.

FIG. 8. Percentage distance error as a function of increasing curva
rue geodesic distances (dashed).
espectively.
7. CONCLUSION

In this paper we have presented a unified set of
rocedures for transforming a previously reconstructed
ortical surface. These transformations achieve two
rimary goals. First, they facilitate visualization of
ortical activation patterns, including the detailed topo-
raphic organization of cortical areas, as well as distrib-
ted activity occurring across an entire hemisphere. In
ddition, such transformations enable two-dimensional

e for surfaces flattened using corrected Dijkstra distances (solid) and
tur
FIG. 10. Spatial distribution of metric distortion introduced by the spherical transformation, painted onto flattened (left), inflated
center), and spherical (right) representations of the same surface. Lateral and medial views are shown in the top and bottom rows,
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205CORTICAL SURFACE-BASED ANALYSIS II
nalysis techniques to be applied to the functional and
tructural properties of the cortical surface. The map-
ing procedures we have presented have the advantage
f being optimal with respect to a well-defined energy
unctional that measures the amount of metric distor-
ion and degree of folding of the transformed surface. In
onjunction with segmentation methods, as described
n the companion paper, these procedures allow the
outine use of surface-based visualization and analysis
f functional and structural properties of the human
ortex.

8. APPENDIX

.1. Numerical Integration

The numerical integration scheme we use is a form of
ultiscale line minimization that allows the surface to
nfold robustly. Given an error functional Jt(x) at time
, and its gradient =J with respect to the vertex
ositions, we will find the time step k which minimizes:

Jt11(x) 5 Jt (x 1 k=J ). (11)

ince the surfaces typically have large folds due to the
nitial projection, simply setting k to a small value and
erforming gradient descent can be very costly. In-
tead, we search for the optimal k in a multiscale
anner which permits macroscopic changes in the

urface at each time step. Specifically, we first con-
train k to be in the range [kmin, kmax], where kmin and
max are given by the smallest (0.1 mm) and largest (20
m) allowable vertex movements, respectively, divided
y the mean gradient magnitude. We then find the
onstant k1 5 kmin 10l (l 5 0,1,2,. . .) which minimizes:

t11 t l

FIG. 11. Histogram of distance errors for the flattening (
J (x) 5 J (x 1 kmin10 =J ), (12) g
ith the search terminating when kmin 10l exceeds kmax.
hat is, we sample Jt(x 1 k=J ) in the range [kmin, kmax]
t order of magnitude intervals. Once we have deter-
ined k1, and hence the proper scale to be searching for

he optimal k, we then sample Jt(x 1 k=J ) around k1 at
2 5 1.5*k1 and k3 5 0.5*k1. Next, we fit a quadratic to
hese three values and compute the time step k4, which
ould be optimal if the error surface were locally
uadratic, as is frequently the case. Finally, we choose
he time step k from the set [0 k1 k2 k3 k4], which
roduces the smallest value of Jt(x 1 k=J ), thus ensur-
ng that J(x) is monotonically decreasing with time.

.2. Integration Schedule

As noted above, the surfaces frequently start with
arge folds due to the projection process. Unfolding the
urface in this state usually requires that the areal
erm be large relative to the metric term in the energy
unctional J(x) (that is, la : ld). Conversely, after the
urface has unfolded we will minimize the metric
istortions and have the areal term be small. Thus, in
he numerical integration we set the ratio la/ld to be
nitially large, and let it decrease as the integration
roceeds.
Another factor to consider is that the distortion

ntroduced by the projection usually results in a gradi-
nt which is not locally coherent. This prevents the
umerical integration scheme outlined above from
nding large times steps which would unfold the sur-

ace in few iterations. One means of alleviating this
roblem would be to first unfold a decimated surface
hen interpolate to the full resolution and continue
nfolding (Drury et al., 1996). In this approach the
ecimation must be done in a manner which respects
he local geometry of the surface. Instead, we take a
impler approach, and use a smoothed version of the

) and spherical transformation (right) of a typical surface.
left
radient in the numerical integration, with the degree
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206 FISCHL, SERENO, AND DALE
f smoothing decreasing as the integration proceeds.
he smoothing of the gradient has an effect similar to
hat of decimation: large regions of the surface move
oherently. Since the surface has no well-defined met-
ic, we are forced to use iterative averaging to perform
he smoothing, a time consuming process.

Thus, the integration proceeds in epochs, where each
poch has a fixed la/ld ratio. Typically we let la/ld start
t 1000 and decrease by factors of 10 until the surface
as converged, with 5 epochs usually being sufficient to
enerate a near-optimal surface. We then set la/ld large
or one last epoch in order to smooth out any remaining
olds in the surface (usually less than 0.05% of the
urface is folded at this point). Within each epoch, we
et the integration proceed using a fixed amount of
radient smoothing, until the decrease in the error
unctional asymptotes. After the error has asymptoted,
e reduce the amount of smoothing and continue with

he integration until the integration with the un-
moothed gradient has asymptoted, which signals the
nd of an epoch.
All the surfaces shown in this paper were generated

n this manner, with each epoch beginning with 1024
terations of gradient smoothing, and the amount of
moothing decreasing by factors of 4 until the integra-
ion using the unsmoothed gradient asymptoted. This
rocedure typically requires on the order of 15 h to
atten a full cortical hemisphere on a 266 MHz Pen-
ium II, although slightly suboptimal surfaces can be
btained in about half that time.
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