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Abstract—Local image structure is widely used in theories of both machine and biological vision. The form of the
differential operators describing this structure for space-invariant images has been weil documented. Although space-
variant coordinates are universally used in mammalian visual systems, the form of the operators in the space-variant
coordinate system has received little attention. In this report we derive the form of the most common differential
operators and surface characteristics in the space-variant domain and show examples of their use. The operators
include the Laplacian, the gradient and the divergence, as well as the fundamental forms of the image treated as a
surface. We illustrate the use of these results by deriving the space-variant form of corner detection and image
enhancement algorithms. The latter is shown to have interesting properties in the complex log domain, implicitly
encoding a variable grid-size integration of the underlying PDE, allowing rapid enhancement of large scale peripheral
features while preserving high spatial frequencies in the fovea. © 1997 Elsevier Science Ltd.

Keywords—Anisotropic diffusion, Space-variant vision, Log-polar, Image enhancement.

1. INTRODUCTION

Images can be characterized in a number of ways. For
example, one can consider an image as having been gen-
erated by a random process. This allows the tools of
statistical mechanics and probability theory to be brought
to bear on the problems of image analysis (e.g., Geman &
Geman, 1984; Cooper, Elliot, Cohen, Reiss & Symosek,
1981). An alternative formulation is to view an image
deterministically, and rely on a geometric analysis of its
properties. Typically, computational constraints force the
analysis to be a local one which leads to the use of dif-
ferential geometry as an important tool in machine and
biological vision. Within the deterministic framework
one can further subdivide the types of approaches. Per-
haps the most common is to consider the image intensity
function to be a discrete sampling of a scalar field over a
subset of the real plane. This leads to the use of multi-
variable calculus and integral transform techniques in
image processing. A somewhat different viewpoint is
to regard the image as a surface embedded in R3, leading
to the characterization of surface patches by quantities
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such as the coefficients of the first fundamental form
(Nitzberg & Shiota, 1992), the Gaussian curvature
(Deriche & Giraudon, 1993; Barth, Caelli & Zetzsche,
1993) and mean curvature (El-Fallah & Ford, 1994).
Many other examples of the use of differential image
structure by both machine and biological vision research-
ers can be found in the literature (e.g., Koenderink, 1984;
Koenderink & van Doorn, 1990, 1994; Deriche et al.,
1992; Deriche & Giraudon, 1993; Florack, ter Haar,
Romeny, Koenderink & Viergever, 1992; Perona &
Malik, 1987, 1990; Beaudet, 1978; Kitchen & Rosenfeld,
1982; Krueger & Phillips, 1989).

Almost without exception the use of differential image
characteristics in machine and biological vision research
has been performed in the space-invariant or Cartesian
domain. However, it has been shown that the mapping
from the mammalian retina to striate cortex is a space-
variant one which can be well approximated by a com-
plex log map (Schwartz, 1977, 1980, 1994). Despite
some notable advantages (dramatic pixel count reduc-
tion, quasi-size and rotation invariance), the complex
log map has not been widely used in the machine
vision community. In large part this has been due to
the lack of shape invariance under translation, which
severely complicates object recognition. This drawback
has recently been addressed (Bonmassar & Schwartz,
1994), allowing frequency domain techniques to be
applied in the complex log domain.
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In a similar manner we wish to transform a class of
standard space domain computational vision algorithms,
which make use of the differential structure of an image,
so that they may be used in the complex log domain. The
geometry of an image is modified by the log mapping,
and this transformation must be accounted for to properly
compute geometric invariants in the range of the map-
ping. In Section 3 of this paper we treat the image as a
scalar field and the complex log mapping as a change of
coordinates, deriving the metric tensor of the transforma-
tion, as well as the form of both the V and the v? opera-
tors in the space-variant coordinate system. The
modification of the operators takes the form of negatively
weighted exponentials which account for the varying
distance between pixels as the distance from the fovea
increases. The conformal nature of the mapping ensures
that the weighting is uniform in both the radial and angu-
lar directions. In Section 3.1 we show that this is con-
cisely expressed by the metric tensor of the log domain,
which provides a means to calculate Cartesian distances
in the log plane. Examples are presented which verify the
form of the modified operators and illustrate their use.

In the latter part of this paper we treat the image as a
surface embedded in R>, and derive the first (Section 4.1)
and second (Section 4.2) fundamental forms of the surface
(doCarmo, 1976) using a log-polar parameterization,
which leads to expressions for the Gaussian and mean
curvature of images in terms of complex log coordinates.
Together, these results allow the computation of differ-
ential image characteristics directly in the log domain,
without referring to the original Cartesian image. In
terms of artificial vision systems this implies that all
calculations can be performed on the much smaller log
domain image, yielding a dramatic speed increase. This
is illustrated by the transformation of both a corner detec-
tion algorithm (Section 5.4), as well as an image
enhancement technique based on anisotropic diffusion
(Section 5.5.), for use directly in the log domain. The
comer detection algorithm was chosen as it is a simple
but useful application of differential geometry to image
processing, and is hence a convenient example of the
application of the types of results derived in this paper.
The anisotropic diffusion is used as an example, as the
form the nonlinear diffusion equation takes in the log
domain is advantageous when compared to the Cartesian
form. Specifically, the non-uniform grid spacing inherent
in the log domain allows the diffusion equation to be
integrated with time steps which are exponential func-
tions of retinal eccentricity, resulting in large scale struc-
ture enhancement in relatively few time steps. For
biological vision, these results specify the form the com-
putation of differential image structure must take if it is
used in mammalian cortical systems.

2. SPACE-VARIANT VISION

The mammalian retina is a space-variant sensor: the
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spacing of sensory neurons across the retinal surface is
not uniform. The density of cells is greatest in the high
acuity fovea, and falls off with retinal eccentricity. This
allows the simultaneous achievement of high resolution
and a wide field of view without requiring an enormous
number of sensing elements. This anatomical feature has
clear perceptual correlates. Visual acuity in the fovea is
greater than in the periphery by at least a factor of 40
(Wertheim, 1894). This is the result of many factors
including the optics of the eye (Campbell & Green,
1965), photoreceptor sampling density (Williams &
Coletta, 1987), spatial averaging due to the size of per-
ipheral receptive fields (Merigan & Katz, 1990), as well
as ganglion cell density (Wissle, Griinert, R6hrenbeck &
Boycott, 1990).

The mapping from the retina to striate cortex has been
shown to be well approximated by a complex log map
(Schwartz, 1977, 1980). This discovery has motivated
the use of the complex log mapping in the construction
of space-variant sensors and algorithms for machine
vision systems (Rojer & Schwartz, 1990; Weiman,
1988; Sandini & Dario, 1989; Sandini, Bosero, Bontino
& Ceccherini, 1989; Messner & Szu, 1986; Schenker,
Cande, Wong & Patterson, 1981; Bonmassar &
Schwartz, 1994, 1996, in press, submitted). The log map-
ping expresses the variation in cortical area devoted to
different regions of the retina.

2.1. Space-variant Vision in Biology

The investigation of the space-variant properties of the
mammalian retino-cortical mapping dates back to the
early 1960s. In order to characterize the transformation
of visual data from retinal coordinates to primary visual
cortex Daniel and Whitteridge (Daniel & Whitteridge,
1961) introduced the concept of the cortical magnification
factor, M, measured in millimeters of cortex per degree of
visual angle. The magnification factor is not constant
across the retina, but rather varies as a function of eccen-
tricity. Experimentally, the cortical magnification factor
has been found to be accurately approximated by

G

M.(r)= T+ Cor 2.1)
where r is the retinal eccentricity measured in degrees,
and C, and C, are experimentally determined constants
related to the foveal magnification and the rate at which
magnification falls off with eccentricity. Integrating eqn
(2.1) yields a relationship between retinal eccentricity
and cortical distance p

e G,
= "= —log(1 + C,r). 2.2
o(r) ,[0 T Czr’dr C og(1+ Cyr) 22)

2 For example, approximately half of primary visual cortex is con-
cerned with the central 8° of the visual field (Wissle et al., 1990).
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original image: 262144 pixels

log(z+0.31): 14307 pixels
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log(z+0.16): 5000 pixels  log(z+0.039): 496 pixels

FIGURE 1. Example of an image (left), and its complex log transformation (right), for various values of the map parameter a. Note that
decreasing a increases the representation of the foveal reglon in the log plane. Dark areas correspond to regions outside the domain of

the mapping.

Schwartz (Schwartz, 1977, 1980) has pointed out that the
cortical magnification factor should be considered a
vector quantity as opposed to a scalar one. The retino-
cortical mapping can then be conveniently and concisely
expressed as a conformal transformation. In this
approach, a complex variable z is used to describe the
retinal coordinates

z=re? =x+ iy. .3)

Polar coordinates are then used to replace Cartesian ones
in the retina

re /x2+y2,0=tan_l(§)- 2.4)

The cortical point (o(z), $(z)) can then be specified by a
single complex variable w as

w=p(z) + i¢(z) = Klog(z + a), Re(z) = 0 (2.5)

where K is a scale factor determined by cortical area,
which will be dropped in the following discussion, and
a is a real positive constant, called the map parameter.
The value of a determines the size of the quasi-linear
region around z = 0, and is generally believed to be in
the range 0.3-0.7° degrees (see Schwartz, 1994, for a
discussion of the significance of K and a). The effect of
modifying a on the mapping can be seen in the following
way (see Figure 1). For small z (i.e., z < a), the mapping
can be approximated using a series expansion around the
point z = 0:

w ~ log(a) + 2 (2.6)
Thus, in the fovea, the mapping is essentially linear. The

magnitude of the derivative of the mapping gives an
approximation to the cortical magnification factor:

dw
dz

1
Z+a

. 2.7

Which is approximately constant for z < a. The complex
log transformation of eqn (2.5) therefore smoothly varies
from a linear map in the fovea, to a logarithmic map in
the periphery, with the magnitude of a controlling the size
of the region of approximate linearity. This is in contrast

with other techniques which explicitly overlay a Car-
tesian fovea on a log image to obtain a similar effect
(Sandini & Dario, 1989; Sandini et al., 1989).

Equation (2.5) is analytic everywhere in the domain
and is hence conformal, implying that local angles are
preserved by the transformation (Churchill & Brown,
1984). The singularity at the origin for the more com-
monly used complex log mapping w = log(z) is removed
at the cost of mapping the two hemifields separately and
managing a discontinuity along the vertical meridian.
The full form of the mapping for both hemifields® is
given by

log(z+ a) Re(z) =0
w= , .
2log(a) —log(—z+a) Re(z) <0

Figure 1 shows an example of an image, and its complex
log transformation for a variety of values of the map para-
meter a. As can be seen, decreasing the value of a (moving
from left to right) increases the magnification of the map,
corresponding to an increased foveal representation. The
original image on the left contains 512 X 512 = 256 K
pixels, as compared to the images after the complex log
transform which contain 14 307 pixels, 5000 pixels, and
496 pixels, respectively (see Rojer & Schwartz, 1990, for
a complete discussion of the details involved in the design
of a complex log transformation). Thus, algorithms can be
expected run an order of magnitude or two faster in the log
domain as compared to the Cartesian one in contemporary
machine vision implementations.*

3. SPACE-VARIANT METRIC TENSOR AND
DIFFERENTIAL OPERATORS

In this section we compute the metric tensor of the com-
plex log mapping, as well as the form of the V operator,

3The complex log transformation requires a branch cut which
divides the complex plane along the imaginary axis. This division
was originally motivated by brain anatomy: the two half-planes in the
range of the mapping correspond to the primary visual area in each
hemisphere of the brain.

4 Rojer and Schwartz (Rojer & Schwartz, 1990) estimate that for
biological systems the increase in speed can be up to four orders of
magnitude.
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which yields the space-variant form of the gradient, the
divergence, as well as the V?* operator in the new coordi-
nate system. The metric tensor expresses how the stan-
dard Cartesian metric induces a metric in the complex
log domain. Used in conjunction with the conformal nat-
ure of the mapping, the metric tensor yields a simple
derivation of the form of the V operator in the log plane.
As noted in Section 2, the complex log coordinate
transform considered in this work is of the form:

w=log(z+a),a €ER,z,w & C,Re(z) = 0. 3.1

More explicitly, the log coordinates (p,9) are given in
terms of their Cartesian counterparts (x,y) by:

— / 2 4 2 a1 Y
p_log( x+a) +y),¢—tan ((x+a))' 3.2)

The inverse relations are:
x=¢€’cosp — a,y=e’sing. (3.3)

The log mapping of eqn (3.2) as well as the inverse
mapping given by eqn (3.3) are both analytic everywhere
in their respective domains, and are hence conformal.
This has a number of interesting and useful implications.
First, the conformal nature of the mapping ensures that
local angles are preserved (Churchill & Brown, 1984).
This in turn implies that the log-polar coordinate basis is
orthogonal when projected into Cartesian space. This
fact will be used to simplify the derivation of the log
domain gradient in Section 3.2. Second, given any con-
formal mapping w(z) = u(x,y) + iv(x,y), the Cauchy—
Riemann equations can be used to relate the directional
derivatives of the coordinate functions as follows
(Greenberg, 1988):

ou__dv ou__ v

ox  ay dy ox
These relationships follow directly from the path inde-
pendence of the differentiability of w, and ensure that the
metric tensor has a simple form, as will be shown in the
next section.

34

3.1. Metric Tensor of the Complex Log Mapping

A useful way to understand the effects of the complex log
transformation on the standard Cartesian operators is in
terms of the metric tensor of the complex log domain.
The metric tensor expresses how distance in log space
relates to distance in Cartesian space. Because the
coordinate transform is space-variant, the metric tensor
is not constant as it is in the Cartesian plane, but rather
varies as a function of log coordinate. Formally, the
metric tensor T of a transformation z from a (p,¢) coor-
dinate system into an (x,y) coordinate system [such as
(3.3] is given by

_ [(zp, 2,) (250 24) ] ’ 55)

| 2gr2,) (240 26)
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where the z; are vectors whose elements are the deriva-
tives of the new coordinate functions with respect to the
subscripted variable. The metric tensor is a multilinear
map which describes what happens to an infinitesimal
length element under the transformation. That is, given
a differential vector dv = (dp, d¢) in the (p,¢) domain,
the metric tensor can be used to calculate the Cartesian
length of dv in the transformed coordinates

{dv,dvy=dv Tdv, (3.6)

where the components of T in the log plane can be com-
puted from eqn (3.3):
e 0
T lo e

I:xpxp +Yo¥o
3.7

XX+ Yoo  XeXe +YoYe

The diagonal form of T is not coincidental, but is rather a
direct consequence of the conformal nature of the com-
plex log map via the Cauchy—Riemann equations. In this
case, the Cauchy—-Riemann equations insure that x, = y4
and x4 = — y,. Given these relationships, it is apparent
that the off diagonal terms in 7 must cancel, and that
therefore the metric tensor of any conformal mapping
has the form T = A §;; (i.e., diagonal, with equal elements
along the diagonal).

Examining the metric tensor yields some insights into
the geometry of the log plane under the induced metric.
From eqn (3.7) we can see that as distance from the fovea
increases, the Cartesian length of a log domain vector v,
is scaled by e”. Conversely, the length of a Cartesian
vector v, mapped into the log plane shrinks by a factor
of e due to the compressive logarithmic nonlinearity.
This fact has direct implications for differentiation in the
log domain as will be shown in the next section.

XpXe VoY

3.2. Space-variant Form of Vf

A straightforward, although tedious way to compute the
space-variant form of the gradient is to use the chain rule
to express Vf in the new (p,9) coordinate system:

_(ofop  ofop\. (ofsp  ofap.
Vi= (8p6x+ a¢ax)'+ (apay+ a¢ay)J' (38)

To complete the transformation, the partials p,, ¢,, g, ¢,
as well as the unit vectors i and j would have to be
calculated in terms of the log coordinates p and ¢.
Instead of taking this approach, we proceed as follows.
As noted in the introduction to this section, the conform-
ality of the log mapping implies that local angles are
preserved by the transformation. This simplifies the deri-
vation considerably. Specifically, it insures that the basis
vectors of the (p,¢) space which are orthogonal in the log
domain are also orthogonal when projected into Carte-
sian space (see Figure 2). Since the gradient is the com-
bination of the directional derivative in any two
orthogonal directions, we are assured that the gradient
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FIGURE 2. Representation of the relationship between the basis vectors and the gradient in the two spaces. The mapping preserves the

angles between the vectors, but not their lengths.

in the log space is of the form

Vf= A(p,¢)(—fe + g—(j;;e ) 39

where the A(p,¢) term accounts for the variation in length
a vector experiences under the log mapping, and e, and
e, are an orthonormal basis (in the induced metric) for
the log domain. Note that eqn (3.9) holds for any con-
formal mapping, with the specifics of the transformation
expressed in the coefficient function A. Another way to
see that the gradient must be of the form given in eqn
(3.9) is to observe that any inhomogenous scaling of the
basis vectors would result in the angle between the gradi-
ent and the basis vectors being different in the two
spaces, which cannot be the case since the mapping is
conformal. Using the chain rule we compute the length of
affox relative to 9ffdp (or, equivalently, the length of dffox
relative to df/9¢):

of| _
dp

) f ox
axap

1% e sé| = af

™ (3.10)

which, of course, is exactly what the metric tensor indi-
cates as well. This exponential scaling is accounted for
by the A(p,¢) term. Normalizing the vectors in terms of
the induced metric gives us an expression for the gradient
in the space-variant domain:’

{9 )
Vf=e "(b—ge,,+ %e,,).

From (3.11 it is apparent that the V has the general form
e "(0/op e, + 6/3¢ e,) which allows the direct computa-
tion of quantities such as the divergence and the curl in
the log plane.

(3.11)

5 Note that this derivation does not account for the varying support of
each log pixel. As one moves into the periphery of the log plane, each
log pixel is typically generated by averaging a larger region of Cartesian
space, both in the mammalian retina and in machine vision systems. The
averaging is done to avoid aliasing in the periphery, and attenuates high
frequency information, partially offsetting the need for a negative expo-
nential weighting to account for varying pixel separation.

3.3. Space-variant Form of V-f

The form of the divergence of a vector field in the log
plane can be calculated in a straightforward manner
using the form of the V operator derived in the prior
section. To do so we will require the derivatives of the
log plane orthonormal basis vectors e, and e, with
respect to the log coordinates. Like their polar counter-
parts, e, and e, do not change in the radial direction and
hence both derivatives with respect to p are zero. To
calculate the change in the basis vector with respect to
the angular log coordinate we use the chain rule as
follows:

d ] d d
€, =Cos¢o e +- sing 5, €4 =C0sp 5 — sing F» (3.12a)

de, a ., 0 de,
—2 —cos¢p — —sing— =e,,
P )

., 0 d
= —s1n¢a—x—cos¢5_ —e, (3.12b)

Given these relations, the divergence of an arbitrary vec-
tor field whose components expressed in the orthonormal
log basis (e,.e,) are (#°f*) can be calculated as:

V.f=e-ﬂ(—a+. +—e > (fe, + f¢). (3.13)

Using (3.12b and the orthonormality of the basis vectors,
the divergence simplifies to

V~f=e"’(f§ +f<$+fp)

where as before the subscripts indicate partial differen-
tiation with respect to the subscripted variable.

(3.14)

3.4. Space-variant Form of the Laplacian

Given the divergence and the gradient, the calculation of
the space-variant form of the Laplacian is also straight-
forward. Using the divergence in the log domain as given
by eqn (3.14) with the components of the vector field
being the components of the log domain gradient
(f.e e, + fse e, as specified by eqn (3.11) yields a
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simple derivation of the Laplacian:
V2f=V»Vf=e""((fpe“’)p + (foe ™) +f,,e"’)
(3.15a)
TPt g P+ fe")
(3.15b)

=>V2f=e_”(fppe_” —foe
=e_2p(fpp+f¢¢)'

Note, that as was the case for the gradient, the Laplacian
is the sum of the second directional derivatives in any
two orthogonal directions. The conformal nature of the
mapping again implies the preservation of angles which
in turn insures that the Laplacian is of the form B(p,¢)
(fpp +f ¢¢) :

The Laplacian, similar to the gradient, can be obtained
by treating the log plane as a Cartesian one, then weight-
ing the result of calculating the standard Laplacian with a
negative exponential in twice the radial coordinate.

3.5. Space-variant Form of Vxf

Using V as a vector operator we now compute the curl of
a vector field whose components in the orthonormal log

basis (e,.e,) are f,f*:

fo:f"(—% + 5$e > (fPes)  (3.162)

(f'e, + f¢e¢)

(3.16b)

_, 0 _, 0
=ep><e pg(fpep+f¢e¢)+e¢><e pé—a

e e frey) e

X (e“’f’j,e,, +e Pfies+e ey — e“’f”ep)
(3.16¢)

=e, X (e

=>fo=e‘”(ff;’—f$+f¢).

(3.16d)

4. DIFFERENTIAL GEOMETRY

In the prior section we treated an image as a scalar field
over a subset of R% However, an alternate and equally
valid approach is to consider it as a surface embedded in
R3. In this formulation the image is given by a set of
points S:

S={(x,y,Dlz—I(x,y)=0} 4.0

where I(x,y) is the intensity function of the image. The set
S is said to be a regular surface if it is locally diffeo-
morphic to R (doCarmo, 1976). Given this property, the
surface can be parameterized by a set of maps x;:U; —
S,U; C R? (note that bold faced symbols denote maps in
this section). Each x; takes points in a neighborhood U of
R? and maps them into points on the surface, thus
describing how to construct S from pieces of the real
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plane. Together, the maps x; cover the surface and
define a coordinate system on it. The significance of
the x; is that they allow calculus to be applied to the
surface through the mappings (assuming they themselves
are sufficiently smooth). Symbolically the maps are
written as

x;(u, v) = (x(u, v), y(u, v), 2(u, v)), u,
vE U, CR%x,y,z€ R, 4.2)

A simple and natural parameterization of an image sur-
face S is given by:

x(u, v) = (u, v, I(u, v)), u, v € R*. 4.3)

A parameterization of a surface is not necessarily unique.
A different parameterization can be obtained by defining
a mapping from an open set U’ in the plane of some new
parameters p — ¢ to the domain U of x in the ¥ — v plane.
If the mapping is 1 — 1 and the determinant of the Jaco-
bian of the transformation is non-zero in the domain, then
the mapping is called an allowable parameter transfor-
mation (Lipschutz, 1969, p. 157), and can be used to pass
back and forth between the two domains.® The log map-
ping of (2.8 is an allowable parameterization as

3p. ) [Pu Pv} ["" cos
b o

e smq&} l
o(u,v) —e’sing e’cosd
=+ 0 4.4)

Thus, the parameter transformation u(p,9), v(p,$) is
allowable, and we can use it to parameterize the surface
in the following way’ (see Figure 3):

x(u(o, ), v(p, $)) = €’cosd — a, €’sing,
I(e°cosp — a, e’sing),

(4.5)

log(a) = p = 10g(a + Rumax)> — gstﬁs E,a>0

2

where R ., is the maximum radius in the visual field, a is
a real positive constant, and p and ¢ are the coordinates
of the log-polar domain as defined in Section 2. In a
slight abuse of notation, in this section we will use
Ip,$) to denote the image in log coordinates, that is
Kp,9) = I(ecosp — a,e’sing).

Just as a curve in R°> can be uniquely specified by two
local invariant properties (the curvature and the torsion),
so too can a surface be uniquely defined by two local
invariant properties known as the first (I) and the second
(II) fundamental forms. These properties are invariant
in the sense that they are functions of the surface, and
not the parameterization (i.e., they are invariant under a

6 The inverse of an allowable parameter transformation is also
allowable.

" To cover the surface we need a second parameter transformation
u(p’,9"), w(p',¢’) corresponding to Re(z) < 0 in (2.8, whose domain is
the left hemifield — #/2 < ¢ < #/2.
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u-v plane

parameter transformation). The components of the first
and second fundamental forms are widely used in
computational vision, and in this section we will derive
the form they take in the log domain using the para-
meterization of (4.5.

4.1. The First Fundamental Form
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U'
u(p9), v(p,9)
p-¢ plane
FIGURE 3. Graphical representation of the different parameterizations of the same surface S.
given by eqn (4.3):
x,=(1,0,1,),x,=(0,1,1,) (4.8a)
E(ug, vo) =141, F(ug, vo) = L1, G(ug, vo) = 1 + I

(4.9a)

1+ 11, |[du
I p(du, dv) = [dudv} . (4.9b)

LI, 1+ |dv

The first fundamental form of differential geometry,
denoted 1, is used to compute metric properties of a sur-
face S, such as length, area, and angle, and is closely
related to the metric tensor computed in Section 3.1. 1
is a mapping which takes tangent vectors in the plane of
the parameterization to tangent vectors on the surface.
The surface tangent vectors can then be used in the same
way as tangent vectors in the plane, i.e., to compute the
angle of intersection of two curves, integrated to yield the
length of a curve on the surface, etc. Formally, the first
fundamental form I of a surface § at a point p = (g, vy),
given a parameterization x, is a quadratic positive defi-
nite form defined on a vector w = (du, dv) inthe u — v
plane given by:

E F|l|du
I,(w)=(w,w), = [dudv] [ ] { } (4.6)
F G||dv

where E, F, and G, the coefficients of the first fundamen-
tal form, are functions of p, and are the components of
the metric tensor of the surface:

E(u09 vO) = (xusxu)p, F(“Oa VO) = (xu’xv) ’ G(uO’ vO)
={x,, %) 4.7

where the subscripts # and v indicate differentiation
with respect to the subscripted variable, and the inner
products are evaluated at the point p. The first funda-
mental form uses the metric tensor of the parameteriza-
tion to express how the standard Cartesian metric in 3
induces a metric on the tangent plane of the surface at
each point.

We can obtain an expression for the first fundamental
form using the Cartesian basis and the parameterization

Calculating the first fundamental form wusing the
log domain parameterization is now straightforward.
We apply eqn (4.7) to the log domain para-
meterization given by eqn (4.5) at the point ¢ =
(po,90). To do so, we must calculate the first derivatives
of the mapping.

x, = (e’cosp, e°sing, 1,), x4 = ( — €’sing, e’ cosg, I ).
(4.10)
The coefficients of I in terms of the complex log vari-
ables are then given by
E(po, $o)=€"+ I}, F(po, $0)=1,14, G(po. $o) = * + 1.
4.11)

The native log domain form of the first fundamental form
is thus given by: -

[E' F'7[dp
I=[dpds] }
L F" G| |d¢
P+ LI, dp
= [dpdé] ] 4.12)
| LI, F+I|Llde

From eqn (4.12) it is clear that for a constant surface the
first fundamental form reduces to the metric tensor of the
coordinate transformation given in eqn (3.7), as one
would expect.

Example: consider the upper hemisphere of the unit
sphere covered by the parameterization

x@w )= (wr, V1= =), (@ +V") <1. (4.13)
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In Cartesian coordinates we have:

X, = (1,0, —u(l- w _vz),—O.S)’

x,=(01,—v(1--)"") @14
Ee 1—? _ uy _ 1—u?
T1—ut 7 1—w2 = 1—=u? =¥
“4.15)

The first fundamental form can be used to calculate the
length of a curve «(¢) along the surface by integrating the
square root of I of the tangent to the curve along «(z). For
example, the curve o(f) = (¢,0) in the u — v plane gives
rise to a curve on the sphere whose length is given by

T T
- _ 1 |
s(a(t)) = Jo Lyy(a'(1))dr = Jo\/ 1-£ d (4.16)

In terms of log coordinates, the same region of the sphere
is parameterized by:

x(p, $)= (e"COS¢ —a, esing, \/Z),d >0 (4.17)

where we have defined d = 1 — a® — e* + 2ae’cos¢ for
conciseness. We can now directly apply (4.11 to calcu-
late the coefficients of the first fundamental form in the
log plane:

ae® (acosgp — &) sing

ad (acosp — & )2 e
d T d ’
a*e*sing’
7 .
Using (3.2 we calculate the form of a(f) in log coordi-
nates to be a(f) = (log(r + a),0) which implies o'(f) =
(dp,d¢) = ((t + @) ~',0). The length of a(z) on the sphere
calculated using the log parameterization is then

s(a(r)) =

E=¢% +

G=ée"+ (4.18)

T 2.2
2 (t+a)t 1
Jo\/((’“) + 1—a2—(t+a)2+2a(t+a)) t+ap
T
1
dr= ,[0 mdt “4.19)

which serves both as a check that (4.12 is correct as well
as an example of the invariance of I under a change of
parameters.

4.,2. The Second Fundamental Form

The second fundamental form of a surface is a second
order quadratic form which yields information about the
local characteristics of the surface relative to the embed-
ding space R>. For example, the coefficients of the sec-
ond fundamental form determine which side of its
tangent plane the surface lies on in a neighborhood of a
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point, and therefore can be used to classify the point as
hyperbolic, parabolic, elliptic, or planar. Like the first
fundamental form, it is invariant under a parameter trans-
formation.? Together, the first and second funda-
mental forms uniquely determine a surface up to a
rigid transformation.

The second fundamental form is defined in terms of
the differential of the normal vector field of the surface.
Given a regular surface S together with a parameteriza-
tion x defined on U C R?, we can construct a unit normal
vector field” N to the surface by taking the vector product
of two linearly independent tangent vectors to the surface
at each point:

X, AX,

N = lx, Ax,l

(4.20)
The mapping N:§ — S from the surface to the unit
sphere is called the Gauss map of S. The differential of
the Gauss map dN, measures how rapidly the normal
vector N pulls away from N(g) in a neighborhood of
the point g. When represented as a matrix in the basis
{x..x,} the determinant of AN, is the Gaussian curvature
K of S at g, and the negative of half the trace is known as
the mean curvature H of S at q. The second fundamental
form of S which takes a vector in T,S and returns a
measure of the curvature in that direction is also defined
in terms of the differential of the Gauss map by
(doCarmo, 1976, p. 141)

I, (w)= —(dN,(w), w). 4.21)

If w is a unit vector then the second fundamental form
gives the normal curvature of any curve parameterized
by arc length passing through q tangent to w. The maxi-
mum and minimum curvatures at a point are denoted k&,
and k, respectively and are known as the principal cur-
vatures of S at g. The corresponding directions are called
principal directions. The Gaussian and mean curvature
are given by the product and average of the principal
curvatures respectively. In the basis {x,x,} the second
fundamental form is given by

e flidu
11 ,(du, dv) = [dudv] 4.21c)
f g]ldv
where the coefficients e, f, and g are'®
e= (Ny xuu) b f = (N’ xuv)qy g = (N, xvv)q- (4'22)

Using the above definitions, we can compute N(g) for the
standard Cartesian parameterization given by (4.3 as

-1, —1I,1
N(q)=(—"-——————)

VI+E+E

(4.23)

8 If a parameter transformation reverses the orientation of the normal
vector field then the second fundamental form changes its sign.

° The choice of sign for the unit normal is arbitrary.

1% Some authors use the notation L, M, N for the coefficients of the
second fundamental form.
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The coefficients are then given by

= qu f-_— Iuv g=
VI+E+E 1+DB+F%

I,
VI+E+ P

4.24)

The Gaussian curvature K can then be computed from the
coefficients of I and II as follows:

I — 2
K eg f2 qu 14 Iuv 2. (4.25)
EG-F° (1++D)
Similarly, the mean curvature H is
e 1eG—2fF +gE
T2 EG-F?
_(+0)L, -2 11, + (1+D),  (426)
= 3
20++1)2

The same procedure can now be used to calculate these
quantities in the complex log domain. Using the parame-
terization of (4.5 we obtain an expression for the surface
normal in log-polar coordinates:

_ (I4sing — Lcosp, —I,cosg — I sing, e”)

\/e* +I,2,+Id2,

The second partials of the log domain parameterization
are

4.27)

X, = (e"cosq&,e" sing, pp) (4.28a)
x,4 = ( — €"sing, e’ cose, I4) (4.28b)
X4y = (— e°cosp, — e°sing, Iyy) (4.28¢)

where we have assumed things are sufficiently smooth
such that all mixed partials are equal. The coefficients of
the second fundamental form in the log domain are then
given by

ep(Ipp _Ip)

Je# +E+E

e, —1I
f=(N,xp¢)q_ ._..h"b__.di

Ver+ L+

ey —1,)
Ve +L+I

e=(N,x,,), = (4.292)

(4.29b)

g=(N,x44), = (4.29c)

As before, we calculate the Gaussian and mean curvature
using the coefficients of the first and second fundamental
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forms
2 2 2
K= _I¢ —I¢¢Ip _Ip + 21¢Ip¢ _Ip¢ +I¢¢Ipp +Iplpp'
(#+ I+ B’
(4.30)
H=
e2p1¢¢ +Iilp +I¢¢I;27 +I‘3, =2l 1,4+ ezplpp +Iilpp
3
2eP(e* +13 +12) 2

4.3

For example, continuing our prior example, we again
consider the upper hemisphere of the unit sphere covered
by the parameterization

x(u,v)= (u, v, V1—u?~ v2), (u2 + v2) <1l. (4.32)

Since the curvature in any direction at every point on the
sphere is given by 1/r, it is clear that the principal cur-
vatures are both equal to 1. This implies that the Gaus-
sian and mean curvature are also unity. Verifying this is a
straightforward computation. In Cartesian coordinates
we have:

_ (vz—l) _ —uyv
qu—_—_—g’ Iuv— g’
(1—u —v2)2 (l—u —v2)2
2
-1
1W=——(”—l—3. (4.33)
(1—i— )2

The coefficients of the second fundamental form [(4.24]
are then given by

vV =1 —uy w—1

e=1"z_» 1=

» 812 7

(4.34)

1—u2—v

Computing the Gaussian and mean curvatures from the
coefficients we obtain

-1
K= eg—fz_(l—uz—vz) _1
- _ 2 2 o —-17 7
EG-F" (1-u’-v?) 4.35)
1eG—2fF+gE _
H=2"F%-F -

As noted previously, the same region of the sphere is
parameterized in terms of log coordinates by

x(u(p, 9), v(p, 9)) = (e" cos¢ — a, e”sing, \/3) ,d>0
(4.36)
where as before, d = 1 — a*> — e® + 2ae’cos¢ for

conciseness. The first and second order partials of the
intensity function with respect to the log coordinates
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are given by
I,=¢ (acosp —e*)d ™%, 1, = (— ae’sing)d
(4.37a)
-3
1,,=¢"(acosp —e”)d "~ 05 _ g% (acosp — e")zd 2
—e%d™%? (4.37b)
-3
1,5 = (—aefcosp)d ™" — (aefsing)’d 2 (4.37c)
-3
I, = (ae’sing) (a® — 1 —aefcosp)d 2 . (4.37d)

We now apply (4.30 to calculate the Gaussian curvature
directly in the log domain

K=
2
— I =Lyl — L+ 2 1y — Ly + 141, + 11, _

1
(@ +E+B)’

(4.38)

which illustrates the invariance of the Gaussian curvature
under a change of parameters.

5. RESULTS

In this section we present a few examples to illustrate
how results derived in the prior sections can be used to
modify a variety of image processing algorithms to run
directly in the log domain. In the first two parts of this
section we illustrate the use of the gradient and Laplacian
in the log plane on simple synthetic images, and verify
the results analytically. In Section 5.3 we use the metric
tensor of the mapping to convert between degrees of the
visual field and millimeters of primary visual cortex. In
Section 5.4 we modify a more sophisticated algorithm,
the corner detection technique of Deriche and Giraudon

log image

input image

p
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(Deriche & Giraudon, 1993), for use directly in the
space-variant coordinate system. Finally, in Section 5.5
we derive a numerical implementation of anisotropic
diffusion (Perona & Malik, 1987, 1990) for multiscale
image enhancement in log coordinates. The form of the
simple numerical implementation in the log plane is
shown to be equivalent to a sophisticated variable grid-
size integration of the underlying PDE, and may have
implications for the possible neurophysiological corre-
lates of perceptual filling-in in primary visual cortex.

5.1. Gradient Magnitude

As an illustration of the validity of eqn (3.11) for gradient
calculation in the log domain we construct an image
which is a ramp function in the x coordinate I(x,y) = x.
In Cartesian space, the gradient of this image has con-
stant magnitude (IV/l = 1). Figure 4 depicts the image, its
log transform, and the two methods of gradient magni-
tude calculation. The third image from the left is the
magnitude of the gradient treating the image as a Car-
tesian one. As can be seen, the gradient magnitude varies
across the image, growing with increasing radial coordi-
nate. In contrast, the image at the far right is generated by
using (3.11 to calculate the gradient magnitude. It is
approximately constant as is appropriate. Analytically
this result is straightforward. Using (3.11 to calculate

the gradient in terms of complex log coordinates yields:
VI(e’cos¢ — a, e”sing) = V(e’cos¢ — a) 5.
= (cosge, — singe). '

Computing the magnitude results in IVIl = cos 2¢ + sin* A
¢ =1 as expected.

5.2. Laplacian

To illustrate the use of the modified Laplacian operator,
we generate a Cartesian image which yields a constant
value when operated on by V. In polar coordinates the

unmodified gradient modified gradient

©n/2

p p

FIGURE 4. Example of an application of > for calculating the gradient magnitude in the log plane. From left to right: input image with
intensity values Ax,y) = x; log map of the input Image; gradient magnitude calculated treating the image plane as Cartesian; and far right:

gradient magnitude calculated using (3.11.
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log image

input image
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unmodified Laplacian modified Laplacian

P p

FIGURE 5. Example of an application of > for calculating the Laplacian in the log plane. From left to right: input image with intensity
values Kx,y) = r*; log map of the input image; Laplacian calculated treating the image plane as a Cartesian; and far right: Laplacian

calculated using (3.15b.

intensity function is given by I(r,0) = r* where r is the
distance from the center of the image (i.e., a paraboloid).
The Laplacian of this image is given by V-V +yH) =
4. Figure 5 shows the results of applying an unmodified
Laplacian (second image from the right) which yields
varying values across the image, and the modified
Laplacian (far right) of (3.15b which is appropriately
uniform.

As before, we can easily verify the result analytically
using (3.15b:

V2I(ecose — a, e”sing) = V?(e* +a® — 2ae’cose)
=~ (4¢%) =4. (5.2)

5.3. Metric Tensor: Conversion Between Degrees of
Visual Field and Millimeters of Cortex

One use for the metric tensor of the coordinate transfor-
mation is the conversion between degrees of visual field
and millimeters of mammalian primary visual cortex.
This is useful in the context of experiments which posit
a neural substrate of a visual percept. The metric tensor
allows conversion of distance and velocity in the visual
field to the corresponding quantities in primary visual
cortex, permitting comparisons of visual phenomena
with physiological estimates of neural conduction velo-
cities. In that vein we will use the estimate by Chervin,
Pierce, and Connors of the lateral signal velocity in pri-
mary visual cortex of 0.06—0.09 mm/s (Chervin et al.,
1988).

In order to compute the number of millimeters of
primary visual cortex that a neural signal must
transit in order to follow a given path in visual space
we must calculate the length of the path in Cartesian
space using the intrinsic metric of the log domain (or,
more formally, the metric induced on Cartesian space
by the inverse log mapping). This involves inverting
the metric tensor of (3.7 and expressing it in Cartesian

coordinates:
N S
x+a)? +y*
poio | GOy . (53)
0 _
(x+ap +y*

Given a parameterized curve a(f) = (x(¢),y(#)) in Carte-
sian coordinates, the cortical length of the path can be
written in terms of the metric tensor as follows:

I, x'(1)
S(Ol(t))cortex S JTI J ([x’(t)y’(t)] T- 1 [ :| )dt

y'(@®

x12+y12

Grar Ty 09

where T, and T, are the starting and ending eccentricities
respectively. To compute the length of a path in milli-
meters of primate cortex, we require a reasonable value
for a, as well as reinstating the scale factor K dropped in
Section 2.1. Estimates of the value of a vary widely in the
literature from as low as 0.1° to as high as 4° (Schwartz,
1994; Van Essen, Newsome & Maunsell, 1984; Dow,
Vautin & Bauer, 1985; Tootell, Hamilton, Silverman &
Switkes, 1988; Levi, Klein & Aitsebaomo, 1985). Setting
a=0.6°, K =5 mm/degree (Rojer & Schwartz, 1992) for
macaque and K = 7 mm/degree for human,'! and choos-
ing a path along the x axis given by a(¢) = (¢,0) which
results in a straight line in the range of the mapping, we
obtain

7, 1
5(e(D))cortex =K Ll \ / (m) dr

= K(log(a + T») — log(a+ Ty)). 5.5)

" Human primary visual cortex has about two to three times the area
of a rhesus monkey, and therefore units of area are scaled by 2, and units
of length by 42 (Schwartz, 1980).
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Thus, a horizontal visual path from 0° to 2.5° corresponds
to a cortical length of approximately 8.2 mm. Since pri-
mary visual cortex in the macaque is about 40 mm in
length, we find that a path crossing the central 5° of the
visual field maps to a cortical path of about 16.4 mm or
approximately 41% of the total length of V1 in the maca-
que, in rough agreement with the figure cited by Wilson,
Levin, Maffei, Rovamo, and DeValois (Wilson et al.,
1990). Setting T; = 0 and T, = 4 yields 20 mm of
cortex devoted to the central 8°, as noted in Section
2.1. One point to note in this context is that the variance
in the estimates of a and K introduce errors in the esti-
mates of cortical velocities which are nonlinearly depen-
dent on eccentricity, and can be as much as a factor of 5.

The first example of the use of these equations will be
taken from the physiological experiments of Tai Sing
Lee (Lee, 1995). In this research, monkeys were shown
images of texture squares and strips while recording were
taken from cells in primary visual cortex. Cells in V1
near the center or medial axis of the square experienced
a delayed enhancement in their firing rate, approximately
50-120 ms slower than V1 response latency. The stimu-
lus size was 4° X 4° with the monkey initially foveating
the center of the stimulus, indicating that a corresponding
neural signal laterally traversing primary visual cortex
would have an initial eccentricity of 2°, and would pro-
pagate inwards to the center of the fovea. Thus,

5(0(t))eorex = 5(108(0.6 + 2) — log(0.6)) = 7.33 mm.
(5.6)

Dividing by the measured delay range yields a required
signal velocity in the range 0.06—0.15 mm/s.

Our second example comes from psychophysical
experiments performed by Paradiso and Nakayama
(Paradiso & Nakayama, 1991). In an effort to probe the
temporal characteristics of perceptual filling-in they pre-
sented bright targets followed by a delayed mask, and
measured the longest delay at which the mask could
inhibit the perception of brightness at the center of the
target. Using a least-squares fit they estimate the rate of
perceptual filling-in as roughly 110-150°/s. Paradiso and
Nakayama then translate this into cortical velocities
using Levi’s (Levi et al., 1985) estimate of magnification
in human primary visual cortex, arriving at cortical velo-
city estimates in the range 0.15-0.40 mm/ms. Paradiso
and Nakayama note that this computation ignores the
possibility that speed may change with eccentricity
(Paradiso & Nakayama, 1991, p. 1233). Using eqn
(5.5) with the human estimate of K = 7 mm/degree,
together with the data they present in Figure 5 (distance
between target and mask versus time to half maximum),
we compute a required cortical conduction velocity of
between 0.015-0.064 mm/ms, well under the maximum
velocity cited above.

5.4. Corner Detection

Deriche and Giraudon (Deriche & Giraudon, 1993)
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outline a sophisticated technique for detecting and accu-
rately localizing corners using the determinant of the
Hessian of the intensity function (7,1, — Ify) at a variety
of scales. The method is based on the observation that a
corner gives rise to an elliptic (positive curvature) maxi-
mum of the determinant of the Hessian in all directions'?
which moves through scale space. They note that the
corner bisector line passes through the maxima at differ-
ent scales as well as the exact location of the corner. They
construct the bisector line by finding elliptical maxima at
two or more scales, then search for a zero crossing of the
Laplacian along the bisector line, using it to specify the
corner location.

We illustrate the transformation of this algorithm into
the log domain using a synthetic smoothed corner at the
Cartesian origin generated by

() (o)) e

where C is a real positive constant which modulates the
degree of smoothing, and erf is the standard error func-
tion defined by

2
erf(x)= ﬁ Ioe dr. 5.8)

Using either the chain rule or the invariance of the Gaus-
sian curvature to a reparameterization, we can calculate
the determinant of the Hessian in the log plane as

2 2 2
— I¢ - I¢¢Ip — Ip + 21¢Ip¢ oo +I¢¢Ipp + IpIpo.

DET = e

(5.9)

Choosing the map parameter a to be 1/(27) we transform
the corner into the log plane, then compute the determi-
nant of the Hessian directly in the space-variant domain
using (5.9, as depicted in Figure 6. The local maximum
in the log domain Hessian for C = 2 occurs at (p,, ¢1) =
(0.5725, 0.7219) which, using the inverse transformation
of (3.3, maps to (1.171, 1.171) in Cartesian coordinates.
Repeating the procedure using C = 8 yields (o3, ¢2) =
(1.234, 0.753) which corresponds to (x,y) = (2.343,
2.343). Together these two points define the corner bisec-
tor line on which the actual corner point is constrained to
lie. Transforming y = mx + b into log coordinates yields
the equation for a log line:

ma—>b
mcos¢ — sin¢) ) (5.10)
Next, the coordinates of the maxima of the Hessian (o,
¢1), (p2, ¢2) are used to solve for the slope and intercept,
obtaining b = 0, m = 1, which specifies the proper Car-
tesian bisector line. Finally, we search the log line p(¢) =
log(a/(cos(¢) — sin(¢))) for zero-crossing of the log

p(d)= 108(

12 The determinants of the Hessian and the Gaussian curvature always
have the same sign.
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Cartesian Hessian

Hessian in Log Domain

FIGURE 6. Top row: corner ‘(Ieﬂ) and the determinant of the Hessian (right) in Cartesian coordinates. Bottom row: complex log trans-
formation of the corner (left), Laplacian of the corner computed directly in the log domain (middle), and the determinant of the Hesslan
computed directly in the log piane. The actual corner location is a zero of the log domain Laplacian at (log(a), 0).

domain Laplacian given by (3.15b, and find that the zero
of the Laplacian occurs at (p., ¢.) = (log(a),0) corre-
sponding to the Cartesian origin, which is the correct
corner location.

5.5. Anisotropic Diffusion

Another example of a sophisticated image processing
technique which can be modified to run in the log
plane is the anisotropic diffusion for image enhancement
proposed by Perona and Malik (Perona & Malik, 1987,
1990). They suggested that a nonlinear diffusion equa-
tion in which the value of the conduction coefficient is
inversely related to the local gradient magnitude could be
used to enhance edges while smoothing regions. Thus,
they treat image intensity as a conserved substance and
allow it to diffuse over time by integrating the following
nonlinear partial differential equation:

1, = V-(cIVIVI) (5.11)

where I, is the derivative of the intensity function with
respect to time, the V operator is with respect to the
spatial coordinates, and the conductance coefficient c()
is a function of the image intensity gradient magnitude.

The Perona-Malik (5.11 is a nonlinear partial
differential equation of a type which is difficult to ana-
lyze. It has been suggested (Nitzberg & Shiota, 1992)
that eqn (5.11) is unstable for some parameter regimes,

although this is still a point of investigation (Perona,
Shiota & Malik, 1994). Furthermore, it can amplify
small scale noise which gives rise to high gradient mag-
nitudes. Many variants of the Perona and Malik scheme
have been proposed to improve its sensitivity to noise, its
instability, and its equilibrium behavior (Alvarez, Lions
& Morel, 1992; Catte, Lions, Morel & Coll, 1992; Dang,
Olivier & Maitre, 1994; El-Fallah & Ford, 1994; Eng-
quist, Lotstedt & Sjogreen, 1989; Illner & Neunzert,
1993; Li & Chen, 1994; Nitzberg & Shiota, 1992;
Nordstrom, 1990; Osher & Rudin, 1990; Pauwels, Proes-
mans, Gool, Moons & Oosterlinck, 1993; Price, Wam-
bacq & Oosterlinck, 1990; Whitaker & Pizer, 1991,
Whitaker, 1993; Cromartie & Pizer, 1993; Kacur &
Mikula, 1995; Malladi & Sethian, 1995; Shah, 1996).

Using the space-variant forms of the gradient (eqn
(3.11)) and the divergence (eqn (3.14)) we can write
eqn (5.11) in log coordinates as

L=V (ce “le, + ce_"Id,ed,) =e”’ ((Ce _plp)p
+(ce"l,)g e’ (5.122)
= e_p (e_p(CIp)p - ce_"lp + e_p(CI¢)¢ + Ce_plp)

=e"2((cl,), + (cly)g) (5.12b)

where the p, ¢ and ¢ subscripts denote partial differentia-
tion with respect to the subscripted variable, and we have
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suppressed the arguments to ¢() and /() in the interests of
conciseness. Using (5.12b and substituting it into a
Taylor series expansion of I around ¢ = t, yields the
first order approximation

I(tg + A1) = I(ty) + At (e ™ (cL, (1)), + (I (6))o)-
(5.13)

Using a discrete lattice with Ap = A¢ = 1, and consider-
ing the central pixel (og, ¢¢), and its four connected
neighbors (0g, ¢_1), (00, 1), (01, o) and (01,¢) We
use a centered difference approximation of the deriva-
tives in eqn (5.13). Labeling these pixels with super-
scripts O, N, W, E, S, respectively, we have
(o)l (t) — ™ (o)1} (1)

(Co(to)lg(to))p == 5

(5.14)

St (ty) — N () (¢,
(co(to)lg(to))¢ ~ (C (t0)4(%0) 20 (o) ( 0)).

We use both backward and forward differences to
approximate the partial derivatives with respect to the
spatial variables so as to limit the domain of our numer-
ical implementation to the four nearest neighbors of the
central pixel

LY (1) = I°(t9) — I™ (20), IE(80) = I%(19) — I°(15), (5.16)

(5.15)

B (t6) = (20) — IV (8), I3 (t0) = IS (89) — I°(t0)
Substituting (5.14(5.15(5.16 into (5.13 we arrive at

Pty + AD=I(ty) <1 —0.5¢ %At < > c"(to)> )

i#0
+0.5¢ ‘”At( > c"(to)l"(:o)) : (5.17)
i#0

Equation (5.17) can equivalently be written as the corre-
lation of the image with a set of space and time varying
masks

Lo, duto+A0)= > D KO, (0", )Mp+0', b +0',10)
o ¢

(5.18)
where the mask weights are given by
0 M (to) 0
Ko — e~ 2P Ar L %e_z_p_ Z )| Eeo)
=Ty |©F A = °
0 St) 0
(5.19)

In two dimensions the two components of the spatial
gradient used in the computation of the conductance
function are calculated using a Sobel operator with a
negative exponential weight as specified by eqn (3.11).
At first sight eqn (5.19) seems problematic. It implies that
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diffusion falls off exponentially in the periphery. This
makes perfect sense as diffusion is a random walk pro-
cess, and hence its propagation rate is proportional to %,
This implies that it requires exponentially more time to
diffuse across a peripheral pixel as compared to a foveal
one. However, with the increased pixel spacing in the
periphery comes increased numerical stability. An
upper bound on the allowable stable time step At can
be computed using Fourier-von Neumann stability ana-
lysis. In Cartesian space the numerical implementation
will be stable if (Haberman, 1987):

(ax’

4c
If we choose ¢ to be in the range (0,1} and let Ax = 1, we
then have Ar < = 0.25 (the lower bound on c is neces-
sary given the ill-posed nature of the backwards heat
equation; Haberman, 1987, p. 74). In the complex log
plane the spatial grid of eqn (5.20) is non-uniform. The
inter-pixel distance is an exponential function of the
radial coordinate, which implies that the stability con-
straint for an allowable time step in the log domain
becomes

Ar= (5.20)

e*
At = s
Equation (5.21) has important implications. It suggests
that the nonlinear PDE eqn (5.11) can be integrated using
exponentially large time steps in the periphery, resulting
in large scale structure enhancement in relatively few
iterations. That is, we assume that ¢ is approximately
constant for a pixel and its four nearest neighbors, and
allow the integration to proceed at different rates across
the log domain image. Of course this is at the cost of fine
scale image structure, but since such details aren’t pre-
served in the periphery by the log mapping this is not a
concern. Effectively, the space-variant time step allows
different regions of the log plane to move through scale
space at different rates—faster in the periphery and
slower in the foveal region. Figure 7 is an example
using the above numerical implementation with a con-
ductance function of the form

(7
c(V)=e k

where k is a real constant which controls the relationship
between edge strength and amount of diffusion. Note that
the log plane diffusion is accomplished after only five
iterations of the numerical technique, yet large scale
structures such as the edge of the license plate and the
boy’s cheek are significantly enhanced in that time. To
achieve comparable enhancement in the Cartesian
domain requires between 50 and 100 iterations. Thus,
the complex log mapping itself provides one—two orders
of magnitude compression, while the exponential dif-
fusion rates allowable in the periphery of the log map

(5.21)

(5.22)
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FIGURE 7. Anisotropic diffusion (K = 0.00075) In the Cartesian and log domains. From left to right: original images, diffusion in Cartesian
domain (50 iterations), complex log transformation of the original images, and images after five iteratlons of > directly in the log plane.

yield another order of magnitude speed increase by
reducing the required number of iterations. For example,
the pepper image in the bottom row contains 512 X
152 =262, 144 pixels. Allowing the Cartesian image to
diffuse!® for 50 iterations requires almost 1400 s to com-
plete on a Sparc-10. The log mapped image in the third
column is made up of 64 X 106 = 6784 pixels, a com-
pression factor of about 40. The large scale enhancement
seen in the image at the lower right is achieved after only
five iterations of the diffusion equation directly in the log
domain, requiring a mere 4 s, a speed increase of a factor
of 350. Given current DSP architectures, the complex log
mapping provides a means for performing anisotropic
diffusion for image enhancement in real time.

6. CONCLUSION

In a deterministic framework, images are frequently trea-
ted in one of two ways: either as a scalar field over a
subset of R2, or as a surface embedded in R°>. The former
approach leads to the use of the standard tools of

13 The Cartesian diffusion is actually performed using the conduc-
tance function suggested by El-Fallah and Ford (1994) as the Perona-
Malik scheme cannot handle the types of noise present in these images.

multivariable calculus and integral transforms such as
Fourier analysis. The latter formulation brings the tools
of differential geometry to bear on image analysis, yield-
ing invariant quantities such as the first and second
fundamental forms. In this paper we have shown how
computational vision algorithms can be implemented
directly in the complex log domain using both
approaches. We have derived the form of the most
common differential operators, V and V2, which can
then be used in the calculation of the gradient, curl,
divergence or the Laplacian in the log plane. In addition,
we have viewed the space-variant image as a surface
using a different parameterization from the standard Car-
tesian one. This led to the development of the first and
second fundamental forms in the log domain, which
yields both the Gaussian and mean curvature.

These results specify the proper way to calculate dif-
ferential image structure in space-variant images, and
allow the modification of a variety of powerful image
processing algorithms for use in the log domain (e.g.,
Perona & Malik, 1987; Nitzberg & Shiota, 1992; Deriche
& Giraudon, 1993). From a computational standpoint,
the form of the V and V? operator is particularly appeal-
ing, as they can be calculated using existing algorithms
for the Cartesian Laplacian and V operators, the results of
which need only be multiplied by a precalculated set of
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weights. In addition, the form of the these operators has
implications for biological systems which employ a
space-variant mapping, and in fact the space-variant
form of V has appeared in a recent model of the superior
colliculus (Optican, 1995).

The transformation of anisotropic diffusion for image
enhancement also has desirable properties in the log plane,
resulting in a simple method for using a space-variant time
step to achieve rapid large scale enhancement in the per-
iphery while preserving fine details in the fovea. Finally,
from a biological standpoint, any model of the mammalian
visual system which includes the complex log mapping
must also account for the geometric warping the image
undergoes in passing to the new coordinate system, using
techniques such as the ones we have outlined.
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