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Quantitative measurement of brain size, shape, and
temporal change (for example, in order to estimate
atrophy) is increasingly important in biomedical im-
age analysis applications. New methods of structural
analysis attempt to improve robustness, accuracy, and
extent of automation. A fully automated method of
longitudinal (temporal change) analysis, SIENA, was
presented previously. In this paper, improvements to
this method are described, and also an extension of
SIENA to a new method for cross-sectional (single time
point) analysis. The methods are fully automated, ro-
bust, and accurate: 0.15% brain volume change error
(longitudinal): 0.5-1% brain volume accuracy for sin-
gle-time point (cross-sectional). A particular advan-
tage is the relative insensitivity to differences in scan-
ning parameters. The methods provide easy manual
review of their output by the automatic production of
summary images which show the results of the brain
extraction, registration, tissue segmentation, and final
atrophy estimation. o 2002 Elsevier Science (USA)

Key Words: structural brain analysis; atrophy mea-
surement; normalized registration.

1. INTRODUCTION

Various methods have been proposed and imple-
mented for cross-sectional (single time point) or longi-
tudinal (multiple time points) analysis of brain atrophy
(or more general changes in brain size and shape)
using magnetic resonance imaging (MRI). A major po-
tential application of atrophy measurement is as a
surrogate marker for the progression of neurodegen-
erative diseases such as Alzheimer’s disease, or of dis-
eases with secondary neuronal or axonal injury, such
as multiple sclerosis.

Cross-sectional methods (e.g., Fisher et al., 1997)
work by measuring brain tissue volume—normally
white plus grey matter—and comparing this against a
normalization volume—normally either brain tissue
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plus cerebrospinal fluid (CSF) volume, or intracranial
volume. Longitudinal methods (e.g., Fox and Freebor-
ough, 1997; Hajnal et al., 1995) typically register
(align) two scans separated in time and find regions of
change. In general, cross-sectional analysis tends to
incur higher absolute measurement error than longi-
tudinal analysis. This is related mainly to the practical
difference between integrated (cross-sectional) and dif-
ferential (longitudinal) measurement of change. Al-
though many data sets do contain multiple time point
measurements, there are also situations where only
single time points are available, or where the question
of interest relates to “absolute” atrophy rather than its
rate. Thus cross-sectional and longitudinal studies/
analyses contain many common features and purposes,
but are also to some extent complementary.

This paper presents completely automated longitu-
dinal and cross-sectional measurement methods
named respectively SIENA (Structural Image Evalua-
tion, using Normalization, of Atrophy) and SIENAX
(an adaptation of SIENA for cross-sectional measure-
ment).

SIENA performs segmentation of brain from non-
brain tissue in the head and estimates the outer skull
surface (for both time-points), and uses these results to
register the two images, while correcting (normalizing)
for imaging geometry changes. Then the registered
segmented brain images are used to find local atrophy,
measured on the basis of the movement of image edges.

SIENAX also performs segmentation of brain from
non-brain tissue in the head and estimates the outer
skull surface, with data from a single time-point. The
brain and skull images are then registered to a stan-
dard space brain and skull image pair. This step nor-
malises for skull size, and means that it is not neces-
sary to measure CSF volume (otherwise a problem in
T1-weighted images as it is hard to accurately separate
CSF and skull). Next a probabilistic brain mask de-
rived in standard space is applied to make sure that
certain structures such as eyes/optic nerve have not
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FIG. 1.

SMITH ET AL.

Left: Example brain surface found by BET (3D rendering using MEDX, Sensor Systems). Middle: Example exterior skull surface

voxels found by BET. Right: example subtraction image (displayed intensity range covers approximately 5% of the images’ original intensity
ranges) after registration (without intensity normalization) of two images from a subject without atrophy, showing large changes outside the

skull but very little change in the brain.

been included in the brain segmentation. Finally tis-
sue-type segmentation is carried out (including partial
volume estimation) and a (normalised) brain volume
estimate is produced.

Note that most methods of atrophy analysis (whether
cross-sectional or longitudinal) will not correctly inter-
pret other types of brain change or pathology (such as
developing tumour or lesion), unless they are explicitly
additionally developed to cope with such cases.

2. SIENA—LONGITUDINAL METHOD

The SIENA method was originally described in
Smith et al. (2001). The major subsequent improve-
ment is in the final stage (the change analysis), so the
initial stages are only described briefly.

2.1. Brain Extraction

The first processing stage is the extraction of the
brain from each of the input images, that is, the seg-
mentation of brain from nonbrain tissue. The method
used is known as BET—Brain Extraction Tool (Smith,
2000a,b). BET uses a tessellated mesh to model the
surface; this model is allowed to deform according to
various dynamic local controlling terms until it opti-
mally fits the brain surface. Results are normally in
extremely good correspondence with manually seg-
mented output, even around the eyes, one of the most
difficult areas to segment from the brain.

BET provides a binary brain mask, the segmented
brain image and an external skull surface image as
output. The cerebellum is included in the segmented
brain, as is the upper part of the brain stem—the stem
is automatically cut according to a surface interpolated
sagittally across the ventral cerebellum, pons, and
temporal lobes.

For an example of extracted brain surface, see Fig. 1
(left).

2.2. Skull Extraction

Measurement of changes in brain size benefits from
the estimation of the skull (which is of fairly unvarying
size over time in an adult) as a normalizing factor in

both cross-sectional and longitudinal measurements.
The importance of this in the latter case will now be
explained in more detail.

Before brain change can be measured, the two im-
ages of the brain have to be registered (aligned).
Clearly this registration cannot allow rescaling, other-
wise the overall atrophy will be underestimated. How-
ever, because of possible changes in imaging geometry
over time (due to gradient calibration drift or variable
local field distortions), it is necessary to hold the scale
constant (see also Freeborough, 1996, for previous
work on this problem; note that some longitudinal
methods have failed to take account of this problem,
although methods based primarily on cross-sectional
measurements tend to normalise against it). With the
method described here, this can be achieved by using
the exterior skull surface (assumed to be constant in
size and shape for an individual) as a scaling con-
straint in the registration.

In most MR images, the skull appears very dark. In
T1-weighted images, the internal surface of the skull is
largely indistinguishable from the CSF, which is also
dark. Thus the exterior surface is searched for. This
also can be difficult to identify, even for human experts,
but is the most realistic surface to aim to find. The
exterior skull surface is found automatically as the
final stage of brain extraction, using BET. Starting
with the estimated brain surface, each surface point is
taken as the start of a search outwards for the optimal
skull position. The most distant (from the brain) point
of low intensity (before the bright scalp) is found, and
the first peak in gradient outside of this is then defined
as the exact position of the exterior of the skull surface.
This method is quite successful, even in regions of
overlying (dark) muscle or where there is significant
(bright) marrow within the bone.

Thus a skull image is generated for each input im-
age, to be used in registration. For example, see Fig. 1
(middle).

2.3. Registration

As already stated, before the differences between two
images can be found, the brains in the two images must
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be aligned, using a registration procedure. The regis-
tration carried out uses a robust and accurate auto-
mated linear registration tool, FLIRT (FMRIB’s Linear
Image Registration Tool) (Jenkinson and Smith, 2001),
which by default uses the correlation ratio cost func-
tion (Jenkinson and Smith, 2001) and a very robust
multistart multiscale optimisation strategy.

The use of FLIRT in this application is more complex
than in the more normal case of registration of two
single images. A three-step procedure is used, where
the brain images are used to optimise the initial reg-
istration and the final translation and rotation, whilst
the skull images are used to optimise the scaling and
skew.

One could stop here and apply change analysis to the
registered second brain and the original first brain.
However, this is not optimal, as the second brain image
has been through a processing step that the first brain
image has not, namely a spatial transformation (in-
volving interpolation of its values). The images will
therefore look slightly different; the transformed sec-
ond brain image will be slightly more blurred than the
first brain image. To ensure that the images being
compared undergo equivalent processing steps, both
input images are transformed to a position which is
halfway between the two. In this way both images are
subjected to a similar degree of interpolation-related
blurring.

The typical quality of this brain registration is illus-
trated in Fig. 1 (right), an example subtraction of a
registered pair of head images, which shows only ap-
preciable motion outside of the skull.

All of the brain and skull images are now discarded;
only the original unsegmented images and the brain
mask images are kept. The transformations are ap-
plied to these images so that two registered (“common-
space”) head images and two registered brain mask
images result. These four images are passed on to the
next stage.

2.4. Masking

The registered binary brain masks are now com-
bined into a single mask which will be applied to the
registered head images to produce two new registered
brain images. The reason for this (rather than keeping
the original registered brain images) is that even slight
differences in the original brain segmentations (i.e.,
the production of the brain masks) would cause the
artefactual appearance of brain change. Thus the two
masks are “binary ORed”—i.e., if either is 1 at a par-
ticular voxel, the output is 1. (They cannot be “ANDed”
as the brain from the second time point would cause
incorrectly reduced masking of the first time point
image in the case of atrophy.)

The resulting combined mask is then applied to the
registered head images to produce two registered brain
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images. These two images are passed to the final stage
for the analysis of change.

2.5. Change Analysis

The next stage in the analysis is the change estima-
tion itself. There is great variety in how this is
achieved amongst published longitudinal atrophy
methods. Some researchers (e.g., Hajnal et al., 1995a,b;
Lemieux et al., 1998) use normalized subtraction of the
images, assuming that resulting areas of significant
deviation from zero correspond to areas of interesting
brain change. This relies on the assumption that the
images will appear exactly the same (apart from the
change of interest); various procedures such as histo-
gram-matching and relative bias field correction have
been suggested (Lemieux et al., 1998), in order to at-
tempt to make the images look as similar as possible.
Others look more directly for changes around tissue
boundaries. For example, Fox and colleagues (Fox and
Freeborough, 1997; Fox et al., 1996; Freeborough and
Fox, 1997; Freeborough et al., 1996) use the “boundary
shift integral” (the area under the intensity profile
across a boundary in image 1 is subtracted from that
for image 2, and normalized by the boundary height,
resulting in an accurate measure of lateral motion),
which gives the motion of each edge, even if blurred,
but only if image contrasts in general are well matched
between scans. Methods that are principally cross-sec-
tional in nature, such as that of Fisher et al., (1997); Ge
et al., (1999); Rudick et al., (1999), and Reddick et al.,
(1999) avoid the need to address the issue of change
analysis.

The system presented here first attempts to find all
brain surface edge points and then estimates the mo-
tion of these edge points from one time point to the
next. This edge motion is found for the whole brain
surface, enabling the total volume change to be esti-
mated. The previously published version of SIENA
found edges on the basis of edge strength, and then
found edge motion by searching for matching edge
points from one image to the next. This suffered
slightly from relatively imprecise definition of edge
points, i.e., discrimination was imperfect. The current
version uses full tissue-type segmentation to find edge
points, and thus is more correctly selective, and also
enforces continuity of the estimated brain surface.
Thus the system presented here finds all brain surface
edge points (including internal brain-CSF edge points,
such as those around the ventricles) and then finds the
motion of these points, in a Bayesian framework, per-
pendicular to the local edge, to subvoxel accuracy.

In order to find all brain surface edge points, tissue
segmentation is performed on the image from time
point 1 after application of the joint brain mask (see
previous section). The tool used (Zhang et al., 2001)
carries out tissue (Grey Matter, White Matter and
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FIG. 2. Example slices through an image after edge point detec-
tion and example perpendicular image profiles.

CSF) segmentation and bias field correction. The
method is based on a hidden Markov random field
(segmentation labelling) model and an associated Ex-
pectation-Maximization algorithm for estimating tis-
sue intensity parameters and bias field (spatial inten-
sity inhomogeneity). The whole process is fully
automatic (after being instructed as to whether the
image is T1 or T2, and whether to attempt to segment
grey and white matter as a single class or as separate
classes), producing a tissue-labeled segmentation. It is
robust and reliable, compared to the more common
finite-mixture-model-based methods, which are sensi-
tive to noise, particularly as they use no spatial neigh-
bourhood information.

The tissue segmentation labels are used to find all
brain edge points. First, gray and white voxels are
combined into a single class, as are also CSF and
background voxels. All boundary voxels between these
two resulting classes are used for the next processing
stage. Note that this method of finding brain edge
voxels enforces a continuous surface (without breaks),
although not necessarily a topologically simple one.
Figure 2 shows example slices through an image after
edge point detection (and also example perpendicular
image profiles as described below).

Next, the common-space registered image from time
point one is processed at each brain edge point. First
the image gradient direction (in 3-D) is found, using a
simple 3 X 3 X 3 Gaussian-weighted derivative oper-
ator. This is used to find the surface normal unit vector
(and will always point from the darker side of the
boundary to the lighter side—this information will
later be used to tell the difference between atrophy and
“growth”).

Next, a 1-D array (an intensity profile perpendicular
to the edge) is filled with values from the image. These
values are sampled at subvoxel positions (using trilin-
ear interpolation) as the array’s elements will not in
general fall exactly at voxel grid positions. The length
of the array is preset to a fixed number of millimeters
(typically £3); the extent will also be limited by the
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presence of a second edge, for example, the far side of a
sulcus, in order to prevent other nearby edges from
confusing the motion estimation. A second 1-D array is
filled with values from exactly the same image posi-
tions from the (common-space registered) image from
time point two.

Edge motion is now estimated by finding the relative
shift, between the arrays, which produces the maxi-
mum correlation (to sub-voxel accuracy using interpo-
lation of the correlation scores). However, before the
correlation, each array is preprocessed in two ways.

First each profile is convolved with a differentiating
kernel, as it makes sense to correlate the derivatives
(edge-enhancements) of the two 1-D image profiles
rather than the raw image values; if there are intensity
or contrast differences between the two images, the
position of maximum correlation could be skewed, but
this effect is much reduced if correlating edge-en-
hanced versions of the profiles. Thus this method re-
quires no (intensity) normalization of the images and is
not sensitive to problems arising from intensity inho-
mogeneities across the images.

The second process is the multiplication of each pro-
file by a high-power exponential profile (smoothed
sharp cutoff); this acts as a prior on the expected mo-
tion by weighting the correlation score, so that higher
motions are less likely than small ones—this helps
reduce the effect of large motion mismatches (which
otherwise make a large contribution to error in the
overall method). This can be viewed as a Bayesian
prior:

P(displacement|data) )
« P(data|displacement)P(displacement),

where the first term on the right can be thought of as
the raw correlation score, and second term is the prior
on the displacement between the profiles

7displacement4
P(displacement) o e " , (2)
which has o set to a suitable length such as 7 mm.
Because the posterior on the displacement is simply
used to find the maximum probability the constants of
proportionality are unimportant.

Thus the optimal displacement is found for each edge
point, and, as stated earlier, the direction of the edge
normal determines whether atrophy or “growth”* is
taking place at this point. The position of optimal dis-
placement is estimated to subvoxel accuracy by fitting

a quadratic through the correlation values at the peak

! “Growth” could either be real, e.g., oedema, or due to nonlinear
motion between the two time points. In the latter case, it will tend to
cancel out with atrophy measurements at other points in the image.
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FIG. 3. Example profiles from one edge point with a slight shift
between time points and the derivatives of these profiles.

and its two neighbors.? Figure 3 shows example pro-
files from one edge point with a slight shift between
time points, and the derivatives of these profiles.

For example slices showing atrophy as dark edge
points and “growth” as light, see Fig. 4.

2.6. Percentage Brain Volume Change Quantification

Brain atrophy is conveniently quantified by a single
number such as the percentage brain volume change
(PBVC). The initial value obtained from the change
image is the sum of all edge point motions (linear voxel
units), which, when multiplied by voxel volume, gives
the total BVC. This is one possible measure, as would
be a PBVC derived directly from this. However, a more
invariant measure is obtained by dividing this volume
by the number of edge points found times the voxel
“area.” (Note, the final stages of SIENA are always
carried out with cubic voxels, so there is no confusion
about the definition of area here.) This measure is then
the mean perpendicular brain surface motion. The rea-
son why this is preferable to the total volume change is
that it is not (to first order) dependent on the number
of edge points found. As the number of edge points

2 Analysis of the resulting motion estimates, in particular histo-
gram analysis, was made during the development of this part of the
method, to ensure that the subvoxel estimation was functioning
correctly, and adding value to the overall method.
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depends on slice thickness (see below—typically by a
factor of two between 1 mm slices and 6 mm) and (to a
lesser extent) other scanning details, it is a good idea to
normalize for the number of points found. Finally, if it
is required to convert the mean surface motion to a
PBVC, the ratio of the brain volume to the brain sur-
face area needs to be estimated.
In this formulation:

I_va

aN '’

(3)

where | is the mean surface motion, Sm is the edge
motion (voxels) summed over all edge points, v is voxel
volume, N is the number of detected edge points, and a
is voxel cross-sectional area. Thus,

Percentage brain volume change
100lA 100IfV

\Y \%

(4)

= 100lIf,

where A is the brain surface area (actual, i.e., not aN),
V is the actual brain volume, f is the ratio of actual area
to volume.

It is possible to find f directly for any given image
without knowing A or V; if a single image is scaled by
a known amount and then compared with the unscaled
version using the above change analysis, the correct
PBVC is known from the scaling that was applied, and
the measurement of | then allows f to be found. It
varies across scanners, slice thicknesses and pulse se-
guence, but normally lies between 0.1 and 0.2 mm .
Applying this method (referred to as self-calibration)
helps reduce bias (systematic error) in the reported
estimates of PBVC.

FIG. 4. Example slices showing atrophy as dark edge points and
“growth” as light. Within the sulci, atrophy approximately balances
“growth”—this is due to slight (nonlinear) motion of the brain be-
tween scans, and does not contribute significantly to the total atro-
phy measurement. However, on the periphery of the cortex, and
particularly around the ventricles, there is strong atrophy apparent.
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3. SIENAX—CROSS-SECTIONAL METHOD

SIENAX is closely related to the SIENA longitudinal
method, but, instead of using images from two different
time points, SIENAX attempts to estimate normalized
brain volume (NBV)® from a single image, using the
skull to normalize spatially, with respect to a standard
image. Cross-sectional studies of brain atrophy nor-
mally attempt to relate brain size at a given point to
the size of the brain at maturity (Sgouros et al., 1999).
In a cross-sectional study the latter can only be esti-
mated from skull size, but the close relationship be-
tween normal skull and brain growth makes this a
reliable marker. Thus, the goal for determination of
relative brain atrophy is to accurately define brain size
with respect to skull size, normalized to a standard
template. Another way of looking at the value of nor-
malizing for head/skull size is that it reduces within-
group variations, making cross-group comparisons
more sensitive. An alternative to using head size in
normalisation is to estimate CSF volume (to end up
with a measure of intracranial volume). One advan-
tage of the approach described here is that it is not
restricted to running on images where CSF can be
robustly found. For example, in T1-weighted images, it
is hard to distinguish between CSF and skull voxels,
reducing the accuracy of CSF-volume-based normaliza-
tion; clearly this is not a problem for SIENAX.

Because SIENAX uses several of the techniques al-
ready described above, the description of the method,
given below, is relatively brief.

3.1. Brain Extraction and Normalization

SIENAX uses BET to find the brain and skull images
from the single input head image. These are then used,
in a similar manner to the registration process in
SIENA, to register the image to standard space brain
and skull images (derived from the MNI152 standard
image (Evans et al., 1996, 1997). Next a standard space
mask is used to make sure that no parts of the eyes are
left from the brain extraction (because of the connec-
tion of the optic nerve, this can occasionally happen)’
and also to provide a consistent (i.e., nonarbitrary)
cutoff point for the brain stem.

® “NBV” will be used to refer to brain volume after normalization to
standard space; “BV” will be used to refer to original brain volume,
i.e., before this normalization. Note that BV is in mm?, and that the
normalization factor is dimensionless, so that NBV is also in mm?.

* The removal of optic nerves and eyes is a difficult problem;
researchers have found it hard to find solutions which work well over
the wide range of image types which are produced in different stud-
ies. This is why the two approaches (of brain extraction and the use
of a standard space mask) are combined to give the best possible
results. However, even this combined approach is not always perfect,
and the resulting possible “segmentation” error forms a part of the
reported quantitative errors evaluated in the results section.
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3.2. Tissue Segmentation

Next, the tissue segmentation program described
above (Zhang et al., 2001) is used to segment the ex-
tracted brain image into grey, white, CSF, and back-
ground, giving a BV estimate. However, unlike the
segmentation carried out for SIENA (where the exact
positioning of the brain boundary, to subvoxel position,
is not important, because it is the motion of the profiles
around this position that matter and not the exact
central point of the profiles), the exact volumes of the
different tissues are now very important. Thus the
segmentation method includes estimation of partial
volume effects (at all voxels, and not just at “edge”
voxels), giving higher volumetric accuracy than a “bi-
narized” segmentation. This is achieved by modelling
the distributions of the intensity in each tissue class,
and using these models to estimate partial volume
effect for any particular voxel, given its intensity and
its neighborhood.

This segmentation is actually carried out on the orig-
inal extracted brain image, not the normalised one.
This is so that no interpolation has been applied to the
image, which would slightly degrade the image and
lead to slightly less accurate segmentation. (The eye
and brain stem masking discussed above is actually
carried out on this image, by applying the reverse
normalisation registration transform to the standard
space mask to bring it into register with the input
image.)

Thus the segmentation gives a total volume for brain
tissue (BV). This is multiplied by a volumetric scaling
factor,® to give normalised brain volume (NBV). The
NBYV can optionally be split into grey and white vol-
umes.

4. VALIDATION/RESULTS

4.1. SIENA—Investigation of Accuracy as a Function
of Slice Thickness

To test the accuracy of SIENA, 16 normal volunteers
were scanned in two separate sessions each, with a
range of slice thicknesses taken during each session, to
enable the dependence on slice thickness of the accu-
racy to be determined (this data is also used, in Section
4.4, to test SIENAX). The subjects’ ages ranged from 26
to 44; half were female. The scanner was a Philips NT
1.5T operating at the NMR Center of the University of
Siena. Scans 1 to 6 were 1 mm to 6 mm slice thickness,
T1-weighted axial 2-D fast field echo, TE = 11 ms,
TR = 35 ms, flip = 40°, NAgc = 1. The 1-mm scan
lasted 18 min, and each successive scan took less time,

® This scaling factor is derived from the normalisation transform
matrix—a simple formula relates the 12 affine registration param-
eters to a volumetric scaling. This is very close to simply multiplying
the three linear scaling factors together.
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FIG. 5. Plot of (PBVC from t0O to t2) vs (PBVC from tO to t1 plus that for t1 to t2).

with the 6-mm scan lasting 3 min. Scan 7 was a 3-mm
slice thickness axial volumetric fast field echo, TE = 3
ms, TR = 20 ms, flip = 30°, NAgc = 1, and lasted 4 min.
Scan 8 was the same as scan 7, but with coronal slices,
lasting 4 min. For all scans the in-slice resolution was
1 by 1 mm, and enough slices were taken to include the
top of the scalp and the bottom of the cerebellum. The
intersession interval was mostly between 1 and 7 days.
Half of the subjects were scanned with the slice thick-
ness order reversed, to control for order effects.

The resulting 128 pairs of images were processed
with SIENA, with no manual intervention. The regis-
tration results and BET segmentation were checked
manually—no obviously incorrect segmentations were
found for any of the 256 images and no obviously in-
correct registrations were found in any of the 128 pairs.

All PBVC measures should ideally be zero, as the
subjects should not be showing any atrophy over such
a short time interval. There are two clear results from
the analysis. First, there is no clear slice-dependence to
the errors. Second, the error in PBVC is small—the
median absolute error over all results is less than
0.15% (a reduction of 0.05% from the median error of
0.2% found using the original version of SIENA, re-
ported in Smith et al., 2001). The fact that thinner
slices do not generate significantly better results than
thicker slices may at first seem surprising. However,
one possible reason for this result is that the lower
resolution scans are taken more quickly and therefore
probably contain less image distortion due to subject
motion during the scan.

The contribution of the skull-based step in the reg-
istration was also investigated; the error introduced by
this step was nearly as large as the total error, sug-
gesting that the skull-based registration on average
may contribute fairly highly to overall atrophy mea-
surement error. However, this step is important to
include, given the common problem of imaging geome-
try drift.

As a further test of the SIENA method, one of
the subject's data sets was tested across slice thick-
nesses—each image from time point 1 was tested
against each image with a different slice thickness
from time point 2. The median absolute error was only
0.4%, despite the differences between the images in
each pairing.

The final outcome of these investigations, therefore,
is that the error in measuring PBVC between images
acquired using the same pulse sequence is around 0.15.
This value is not strongly slice-thickness dependent.

4.2. SIENA—Validation Using Patient Data from
Three Time Points

Further investigations were carried out with data
sets of three-time-point scans of patients. A sensitive
method of error analysis (Fox and Freeborough, 1997)
can be carried out on such data; the atrophy measure
from the first time point (t0) to the second (t1) is added
to the measure from the second time point (t1) to the
third (t2), and this sum compared with the direct mea-
sure from t0 to t2. This will show up most sources of
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FIG. 6. Plots (one plot for each subject) of volumetric scaling factor (y) derived from normalization vs different slice thicknesses (x = 0,
1 corresponds to the two sessions’ 1-mm scans, 2,3 to 2-mm; 4,5 to 3-mm; 6,7 to 4-mm; 8,9 to 5-mm; 10,11 to 6-mm; 12, 13 to the 3-mm
volumetric scan; and 14, 15 to the 3-mm volumetric coronal readout scan.

error in the atrophy estimation procedure and is there-
fore a useful validation of the method. Sources of error
not covered are those which affect both halves of the
comparison equally; for example, if a scaling error was
caused by inaccurate skull estimation at one time
point, and affected the tO to t1 atrophy measure in the
same way that it affected the tO to t2 measure, this
would not show in the three-time-point analysis.
Previously, MR images of brains of 39 multiple scle-
rosis patients were used in this manner to show that
the error in PBVC estimation on patient data agrees
with the estimate derived from the test-retest normals
data (Smith et al., 2001). A second data set has more
recently been analysed using 141 ageing volunteers
(mean age 75, standard deviation 6 years), courtesy of
the Challenge/Optima project, Drs. Kevin Bradley and
Marc Budge, Radcliffe Infirmary, Oxford. The results
are shown in Fig. 5; points should ideally lie on they =
x line. The error bars show £0.15%, and are sufficient
to explain the majority of the deviations from the line
(the median distance from the line is 0.22%), demon-
strating that the precision of the method as applied to
“active atrophy” data sets is comparable to that with
normal controls (other data sets have shown even
closer agreement with the “Siena normals” error esti-
mation). Note that there is a slight bias above the line
for higher atrophy rates, suggesting that higher atro-
phy is slightly underestimated compared with lower
rates. A possible explanation is in the Bayesian weight-
ing against large edge motion (useful for reducing error

and thus increasing sensitivity)—this tradeoff is being
investigated further.

4.3. SIENA—Intersite Image Testing

As an extreme test of the robustness of SIENA to
changes in imaging parameters, three images of the
same subject, each using a different MR scanner, were
used in an A-B-C-A atrophy estimation test. Clearly
the atrophy results from these three tests should sum
to zero. Two scans were taken at 1.5T with 3-mm slices
(NMR Center, University of Siena and Montreal Neu-
rological Institute) and one at 3T with 3.5-mm slices
(FMRIB, Oxford). The scans span a period of 1 year.
The mean absolute PBVC estimated is 1.2%, and the
summed PBVC is 0.3%.

4.4. SIENAX—Investigation of Error as a Function of
Slice Thickness

To test the error of SIENAX, the data from the 16
normal volunteers described in Section 4.1 was used.
Every pair of within-subject same-slice-thickness im-
ages was used in a test-retest of both BV and NBV. The
mean error in BV (i.e., due to BET and segmentation
only) was 0.4% (this error is expressed as a percentage
of brain volume), and the mean error in NBV (i.e., for
the whole process including normalization) was 1%.
Thus, as expected, the normalization step increases
test—retest error. However, the value of the normalisa-
tion step (by reducing cross-subject variability) can be
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seen when the standard error of the mean brain vol-
ume for the group is estimated with and without nor-
malisation; SE(BV) for the group is 1.5% and SE(NBV)
is 0.7%.

A more detailed investigation of these results is now
described. First, Fig. 6 shows separate plots for the
different subjects of the volumetric scaling factor de-
rived from the normalization step. The different slice
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Plots of BV vs different slice thicknesses.

thicknesses are plotted in x in the same order as de-
scribed in 4.1 there are two separate values for each
slice thickness (one for each time point). The vertical
spread of the different subjects’ plots shows the varia-
tion in head size within this group. The relative con-
stancy of each plot (particularly for the first 6 slice
thicknesses) is encouraging. The slightly different re-
sults for the final two slice thicknesses (x values of 12
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FIG. 9. SIENAX output for an epilepsy patient following frontal
lobe surgery.

to 15) are still less than the spread across subjects, and
are presumably due to the quite different sequences
used for these images (including possibly slightly dif-
ferent imaging geometry calibration).

Figures 7 and 8 show plots of estimated BV and
NBV. The BV estimates are more consistent (within
subject) than the NBV estimates, as errors due to the
normalization have not been added. However, the
value of the normalisation can be seen by noting that
the fractional spread across subjects is reduced by a
factor of at least 2.

4.5. SIENAX—Extreme Parenchyma Loss

Figure 9 shows the SIENAX output for an epilepsy
patient following frontal lobe surgery. SIENAX has
successfully coped with both the brain extraction and
tissue segmentation. The NBV for this patient is esti-
mated at 1.26 X 10° mm? (compared with 1.45 X 10°
mm? in a relevant control group.)

5. CONCLUSION

This paper presents SIENA, a fully automated
method of longitudinal (temporal) brain change analy-

SMITH ET AL.

sis, and an extension to a new method, SIENAX, for
cross-sectional (single time point) analysis. SIENA is
useful, for example, for longitudinal studies where
maximal sensitivity to change over time is required.
SIENAX is useful, for example, for differentiating two
groups of subjects on the basis of single time point
brain size measurement.

The methods are fully automated, robust and accu-
rate: 0.15% brain volume change error (longitudinal)
and 0.5-1% brain volume accuracy for single-time
point (cross-sectional).

The SIENA and SIENAX software is freely available
as part of the FMRIB Software Library (FSL) from the
www.fmrib.ox.ac.uk/fsl website.
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