|
Size: 3644
Comment:
|
Size: 6677
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 5: | Line 5: |
| For general tips on using FsFast, download this powerpoint: | For general tips on using FsFast, download this [[http://surfer.nmr.mgh.harvard.edu/pub/docs/freesurfer.fsfast.ppt|FS-FAST powerpoint]] |
| Line 7: | Line 7: |
| . [[http://surfer.nmr.mgh.harvard.edu/pub/docs/freesurfer.fsfast.ppt|Using FS-FAST]] | This walkthrough demonstrates how to run a functional connectivity analysis on resting state fMRI data. |
| Line 11: | Line 11: |
| Ex: unpacksdcmdir -src $DCM/$subject/cdrom/$rawdi -targ $fcMRI_dir/$subject -cfg $cfg -fsfast -unpackerr ) | Sample cmd: |
| Line 13: | Line 13: |
| unpacksdcmdir -src dicomdir/subject/ALLDICOMS -targ fcMRI_dir/subject -cfg subject_config.txt -fsfast -unpackerr | |
| Line 14: | Line 15: |
| In this sample command... | |
| Line 15: | Line 17: |
| * Have all fMRI dicoms linked into "ALLDICOMS" directory * Arguement for "-targ" specifies output directory * subject_config.txt is a configuration text file you create (format below) * Use "-fsfast" to generate fsfast hierarchy |
|
| Line 16: | Line 22: |
| 1.QA Check after unpacking: | subject_config.txt format: 28 bold nii f.nii 29 bold nii f.nii Col.1: scan acquisition number Col.2: output dir name will be created within "fcMRI_dir/subject" Col.3: output file format - this example is nifti format Col.4: output filename. In this example, 2 files will be created: . fcMRI_dir/subject/028/f.nii fcMRI_dir/subject/029/f.nii *QA Check after unpacking: |
| Line 21: | Line 36: |
| *STEP 2: Reconstruction Anatomical data using "recon-al -all" | *STEP 2: Reconstruction Anatomical data using [[https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all|recon-all]] |
| Line 23: | Line 38: |
| 1.Set SUBJECTS_DIR | Sample cmd: |
| Line 25: | Line 40: |
| 2.QA Check: | setenv SUBJECTS_DIR /path/to/recon_dir/ ; recon-all -s subject_dirname -all -i pathtoT1dicom_scan1.dcm -i pathtoT1dicom_scan2.dcm In this sample command... * set your SUBJECTS_DIR variable to your FreeSurfer subject recon directory * set the subject's directory name with "-s" ... the arguement you provide will become the directory name within $SUBJECTS_DIR * use "-i" to supply the dicoms to reconstruct. Use one "-i" per T1 acquisition. A. QA Check: |
| Line 30: | Line 55: |
| * D - Check hierarchy of reconstructed anatomical data [[https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all|recon-all]] | * D - Check hierarchy of reconstructed anatomical data |
| Line 32: | Line 57: |
| 1.Make FSFAST basic hierarchy (only if data are not unpacked in FSFAST hierarchy) | B. Use FSFAST directory hierarchy: |
| Line 36: | Line 61: |
| 2.Link to FreeSurfer anatomical analysis | C. Link to FreeSurfer anatomical analysis: Create "subjectname" text file in the session directory. Write in it the subject's recon directory name (as labeld in $SUBJECTS_DIR). |
| Line 38: | Line 63: |
| A - Make subjectname file in the session directory to link a subject's functional & structural data 3.Create a sessid file (text file with list of your sessions)in your Study DIR. 4.Create a Stimulus Schedule (Paradigm file) in bold folder (A "paradigm" file is a record of which stimulus was presented when & for how long. Each paradigm file has four columns: * A - Stimulus onset time (sec) * B - Condition ID code (0, 1, 2, ...) * C - Stimulus Duration (sec) * D - Stimulus Weight (usually 1) |
D. Create a sessid file (text file with list of your sessions) in your Study DIR (optional) |
| Line 53: | Line 67: |
| # Preprocessing of fMRI Data | Sample cmd: |
| Line 57: | Line 71: |
| 1.By default this will do motion correction, smoothing & brain masking | A. By default this will do motion correction, smoothing & brain masking |
| Line 59: | Line 73: |
| 2.Quality Check (plot-twf-sess) 3.Examine additions to FSFAST hierarchy (in each run of bold dir): | B. Quality Check (plot-twf-sess) |
| Line 61: | Line 75: |
| . f.nii (Raw fMRI data) . fmc.nii (Motion corrected-MC) fmcsm5.nii (MC & smoothed) . fmc.mcdat (Text file with the MC parameters (AFNI)) . brain.mgz (Binary mask of the brain) |
C.Examine additions to FSFAST hierarchy (in each run of bold dir): |
| Line 67: | Line 77: |
| # Function-Structure Registration View unregistered: | ||f.nii ||(Raw fMRI data) || ||fmc.nii ||(Motion corrected-MC) || ||fmcsm5.nii ||(MC & smoothed) || ||fmc.mcdat ||(Text file with the MC parameters (AFNI)) || ||brain.mgz ||(Binary mask of the brain) || |
| Line 69: | Line 83: |
| . [[http://surfer.nmr.mgh.harvard.edu/fswiki/tkregister-sess|tkregister-sess]] -s <subjid> -regheader) | |
| Line 71: | Line 84: |
| Run automatic registration: | |
| Line 73: | Line 85: |
| . [[http://surfer.nmr.mgh.harvard.edu/fswiki/spmregister-sess|spmregister-sess]] -s <subjid> | NOTE: you ''may'' need to convert the file "fmcpr.mgz" to fmcpr.nii using [[http://surfer.nmr.mgh.harvard.edu/fswiki/mri_convert|mri_convert]] |
| Line 75: | Line 87: |
| Check automatic registration: | Found in each bold scan dir. Sample cmd: |
| Line 77: | Line 89: |
| . [[http://surfer.nmr.mgh.harvard.edu/fswiki/tkregister-sess|tkregister-sess]] -s <subjid> | mri_convert session/bold/002/fmcpr.mgz session/bold/002/fmcpr.nii |
| Line 79: | Line 91: |
| A - Make edits if needed using scale as the last resort Check talairach registration: | mri_convert session/bold/003/fmcpr.mgz session/bold/003/fmcpr.nii |
| Line 81: | Line 93: |
| . [[http://surfer.nmr.mgh.harvard.edu/fswiki/tkregister2|tkregister2]] --s <subjid> --fstal --surf | |
| Line 83: | Line 94: |
| *STEP 4: Use fcseed-sess to generate time-course information for your chosen seed region (as well as nuisance variable signal). | If using a full Freesurfer parcellations from aparc+aseg.mgz, continue with step 4 as described below. If you would like to split the Freesurfer parcellation, follow the [[FsFastFunctionalConnectivityWalkthroughSplittingSeeds |additional steps here]] *STEP 4: Use fcseed-config to record the parameters you wish to pass to your connectivity analysis. Sample command: fcseed-config -segid 1010 -fcname mean.L_Posteriorcingulate.dat -fsd bold -mean -cfg mean.L_Posteriorcingulate.config This example will use the FreeSurfer cortical segmentation for the left posterior cingulate (segID: 1010). For seed regions, we recommend generating the mean signal timecourse by using "-mean" *STEP 5: Pass the config text file to fcseed-sess to generate time-course information for your chosen seed region (or for nuisance variable signal). Sample cmd (mean seed region timecourse): fcseed-sess -s <session> -cfg mean.L_Posteriorcingulate.config Sample cmd (Principal component analysis for nuisance regressors): for white matter: . fcseed-config -wm -fcname wm.dat -fsd bold -pca -cfg wm.config . fcseed-sess -s <session> -cfg wm.config for ventricles + CSF: . fcseed-config -vcsf -fcname vcsf.dat -fsd bold -mean -cfg vcsf.config . fcseed-sess -s <session> -cfg vcsf.config *NOTE: Once a config file is created it may be used for multiple sessions |
| Line 87: | Line 125: |
| *STEP 6: Use [[http://surfer.nmr.mgh.harvard.edu/fswiki/selxavg3-sess|selxavg3-sess]] to run the subject-level analysis | Sample cmd: |
| Line 89: | Line 127: |
| *STEP 7: Use [[http://surfer.nmr.mgh.harvard.edu/fswiki/mri_glmfit|mri_glmfit]] or [[http://surfer.nmr.mgh.harvard.edu/fswiki/selxavg3-sess|selxavg3-sess]] to run a group-level analysis | mkanalysis-sess -a <analysisname> . -surface fsaverage <hemi> -notask -taskreg mean.L_Posteriorcingulate.dat 1 -nuisreg vcsfreg.dat 3 -nuisreg wmreg.dat 3 -nuisreg global.waveform.dat 1 -fwhm 5 -fsd bold -TR <TR> -mcextreg -polyfit 2 -nskip 4 *STEP 6: Use [[http://surfer.nmr.mgh.harvard.edu/fswiki/selxavg3-sess|selxavg3-sess]] to run the subject-level analysis outlined by the above mkanalysis-sess cmd. . selxavg3-sess -s <session> -a <analysisname> *STEP 7: Choose the contrast file (generated in each session's contrast directory) that you wish to analyze on a group level: # ces.mgz - contrast effect size (contrast matrix * regression coef) # cesvar.mgz - variance of contrast effect size # sig.mgz - significance map (-log10(p)) # pcc.mgz - partial correlation coefficient map *STEP 8: To continue with a group-level analysis, try one of the methods below: Method 1: *create fsgd file containing all sessions of interest *Concatenate contrast files using [[http://www.freesurfer.net/fswiki/mri_concat|mri_concat]] *Run group analysis using [[http://www.freesurfer.net/fswiki/mri_concat|mri_glmfit]] Should also be possible with: Method 2: *[[http://www.freesurfer.net/fswiki/Qdec|Qdec]] Should also be possible with: Method 3: *Concatenate with [[http://www.freesurfer.net/fswiki/isxconcat-sess|isxconcat-sess]] *Run group analysis using [[http://www.freesurfer.net/fswiki/mri_concat|mri_glmfit]] |
work in progress...
About
Walkthrough: How to use FsFast and fcseed-sess for functional connectivity analysis including example commands.
For general tips on using FsFast, download this FS-FAST powerpoint
This walkthrough demonstrates how to run a functional connectivity analysis on resting state fMRI data.
*STEP 1: Unpack Data into the FSFAST Hierarchy using unpacksdcmdir
Sample cmd:
unpacksdcmdir -src dicomdir/subject/ALLDICOMS -targ fcMRI_dir/subject -cfg subject_config.txt -fsfast -unpackerr
In this sample command...
- Have all fMRI dicoms linked into "ALLDICOMS" directory
- Arguement for "-targ" specifies output directory
- subject_config.txt is a configuration text file you create (format below)
- Use "-fsfast" to generate fsfast hierarchy
subject_config.txt format:
28 bold nii f.nii 29 bold nii f.nii
Col.1: scan acquisition number Col.2: output dir name will be created within "fcMRI_dir/subject" Col.3: output file format - this example is nifti format Col.4: output filename. In this example, 2 files will be created:
- fcMRI_dir/subject/028/f.nii fcMRI_dir/subject/029/f.nii
*QA Check after unpacking:
- A - Check unpacked data (time points, # of slices ..etc)
- B - Check FSFAST hierarchy in session folder
*STEP 2: Reconstruction Anatomical data using recon-all
Sample cmd:
- setenv SUBJECTS_DIR /path/to/recon_dir/ ; recon-all -s subject_dirname -all -i pathtoT1dicom_scan1.dcm -i pathtoT1dicom_scan2.dcm
In this sample command...
set your SUBJECTS_DIR variable to your FreeSurfer subject recon directory
- set the subject's directory name with "-s" ... the arguement you provide will become the directory name within $SUBJECTS_DIR
- use "-i" to supply the dicoms to reconstruct. Use one "-i" per T1 acquisition.
A. QA Check:
- A - Check talairach transformation
B - Check skull strip, white matter & pial surface
- C - Re-run "recon-all" if edits are made
- D - Check hierarchy of reconstructed anatomical data
B. Use FSFAST directory hierarchy:
C. Link to FreeSurfer anatomical analysis: Create "subjectname" text file in the session directory. Write in it the subject's recon directory name (as labeld in $SUBJECTS_DIR).
D. Create a sessid file (text file with list of your sessions) in your Study DIR (optional)
*STEP 3: Pre-process your bold data using preproc-sess preproc-sess
Sample cmd:
preproc-sess -s <subjid> -fwhm <#>
A. By default this will do motion correction, smoothing & brain masking
B. Quality Check (plot-twf-sess)
C.Examine additions to FSFAST hierarchy (in each run of bold dir):
f.nii
(Raw fMRI data)
fmc.nii
(Motion corrected-MC)
fmcsm5.nii
(MC & smoothed)
fmc.mcdat
(Text file with the MC parameters (AFNI))
brain.mgz
(Binary mask of the brain)
NOTE: you may need to convert the file "fmcpr.mgz" to fmcpr.nii using mri_convert
Found in each bold scan dir. Sample cmd:
mri_convert session/bold/002/fmcpr.mgz session/bold/002/fmcpr.nii
mri_convert session/bold/003/fmcpr.mgz session/bold/003/fmcpr.nii
If using a full Freesurfer parcellations from aparc+aseg.mgz, continue with step 4 as described below.
If you would like to split the Freesurfer parcellation, follow the additional steps here
*STEP 4: Use fcseed-config to record the parameters you wish to pass to your connectivity analysis.
Sample command: fcseed-config -segid 1010 -fcname mean.L_Posteriorcingulate.dat -fsd bold -mean -cfg mean.L_Posteriorcingulate.config
This example will use the FreeSurfer cortical segmentation for the left posterior cingulate (segID: 1010). For seed regions, we recommend generating the mean signal timecourse by using "-mean"
*STEP 5: Pass the config text file to fcseed-sess to generate time-course information for your chosen seed region (or for nuisance variable signal).
Sample cmd (mean seed region timecourse):
fcseed-sess -s <session> -cfg mean.L_Posteriorcingulate.config
Sample cmd (Principal component analysis for nuisance regressors):
for white matter:
- fcseed-config -wm -fcname wm.dat -fsd bold -pca -cfg wm.config
fcseed-sess -s <session> -cfg wm.config
for ventricles + CSF:
- fcseed-config -vcsf -fcname vcsf.dat -fsd bold -mean -cfg vcsf.config
fcseed-sess -s <session> -cfg vcsf.config
- NOTE: Once a config file is created it may be used for multiple sessions
*STEP 5: Use mkanalysis-sess to setup an analysis for your FC data
Sample cmd:
mkanalysis-sess -a <analysisname>
-surface fsaverage <hemi> -notask -taskreg mean.L_Posteriorcingulate.dat 1 -nuisreg vcsfreg.dat 3 -nuisreg wmreg.dat 3 -nuisreg global.waveform.dat 1 -fwhm 5 -fsd bold -TR <TR> -mcextreg -polyfit 2 -nskip 4
*STEP 6: Use selxavg3-sess to run the subject-level analysis outlined by the above mkanalysis-sess cmd.
selxavg3-sess -s <session> -a <analysisname>
*STEP 7: Choose the contrast file (generated in each session's contrast directory) that you wish to analyze on a group level:
- # ces.mgz - contrast effect size (contrast matrix * regression coef) # cesvar.mgz - variance of contrast effect size # sig.mgz - significance map (-log10(p)) # pcc.mgz - partial correlation coefficient map
*STEP 8: To continue with a group-level analysis, try one of the methods below:
- Method 1:
- create fsgd file containing all sessions of interest
Concatenate contrast files using mri_concat
Run group analysis using mri_glmfit
Concatenate with isxconcat-sess
Run group analysis using mri_glmfit
