Differences between revisions 6 and 10 (spanning 4 versions)
Revision 6 as of 2011-01-14 12:03:53
Size: 3036
Editor: TylerTriggs
Comment:
Revision 10 as of 2011-01-14 18:37:24
Size: 4865
Editor: TylerTriggs
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
For general tips on using FsFast, download this powerpoint: For general tips on using FsFast, download this [[http://surfer.nmr.mgh.harvard.edu/pub/docs/freesurfer.fsfast.ppt|FS-FAST powerpoint]]
Line 7: Line 7:
 . [[http://surfer.nmr.mgh.harvard.edu/pub/docs/freesurfer.fsfast.ppt|Using FS-FAST]] This walkthrough is based on
Line 9: Line 9:
*STEP 1: Unpack Data into the FSFAST Hierarchy using "unpackscmdir" *STEP 1: Unpack Data into the FSFAST Hierarchy using [[https://surfer.nmr.mgh.harvard.edu/fswiki/unpacksdcmdir|unpacksdcmdir]]
Line 11: Line 11:
[[https://surfer.nmr.mgh.harvard.edu/fswiki/unpacksdcmdir|unpacksdcmdir]] Ex:
unpacksdcmdir -src dicomdir/subject/ALLDICOMS -targ fcMRI_dir/subject -cfg subject_config.txt -fsfast -unpackerr

In this example command...
                   *Have all fMRI dicoms linked into "ALLDICOMS" directory
                   *Arguement for "-targ" specifies output directory
                   *subject_config.txt is a configuration text file you create (format below)
                   *Use "-fsfast" to generate fsfast hierarchy

subject_config.txt format:

28 bold nii f.nii
29 bold nii f.nii

Col.1: scan acquisition number
Col.2: output dir name will be created within "fcMRI_dir/subject"
Col.3: output file format - this example is nifti format
Col.4: output filename. In this example, 2 files will be created:
  fcMRI_dir/subject/028/f.nii
  fcMRI_dir/subject/029/f.nii
Line 14: Line 33:
Line 18: Line 36:
*STEP 2: Reconstruction Anatomical data using "recon-al -all" *STEP 2: Reconstruction Anatomical data using [[https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all| recon-all]]
Line 20: Line 38:
1.Set SUBJECTS_DIR Ex:
Line 22: Line 40:
setenv SUBJECTS_DIR /path/to/recon_dir/
recon-all -s subject_dirname -all -i pathtoT1dicom_scan1.dcm -i pathtoT1dicom_scan2.dcm

In this example command...
                   *set your SUBJECTS_DIR variable to your FreeSurfer subject recon directory
                   *set the subject's directory name with "-s" ... the arguement you provide will become the directory name within $SUBJECTS_DIR
                   *use "-i" to supply the dicoms to reconstruct. Use one "-i" per T1 acquisition.
Line 27: Line 52:
 * D - Check hierarchy of reconstructed anatomical data [[https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all|recon-all]]  * D - Check hierarchy of reconstructed anatomical data
Line 30: Line 56:

{{attachment:fsfast-hierarchy.jpg}}
Line 64: Line 92:
     tkregister-sess -s <subjid> -regheader)  . [[http://surfer.nmr.mgh.harvard.edu/fswiki/tkregister-sess|tkregister-sess]] -s <subjid> -regheader)
Line 68: Line 96:
     spmregister-sess -s <subjid>  . [[http://surfer.nmr.mgh.harvard.edu/fswiki/spmregister-sess|spmregister-sess]] -s <subjid>
Line 72: Line 100:
          tkregister-sess -s <subjid>  . [[http://surfer.nmr.mgh.harvard.edu/fswiki/tkregister-sess|tkregister-sess]] -s <subjid>
Line 76: Line 104:
      tkregister2 --s <subjid> --fstal --surf  . [[http://surfer.nmr.mgh.harvard.edu/fswiki/tkregister2|tkregister2]] --s <subjid> --fstal --surf
Line 80: Line 108:
*STEP 5: Use mkanalysis-sess to setup an analysis for your FC data *STEP 5: Use  [[http://surfer.nmr.mgh.harvard.edu/fswiki/mkanalysis-sess|mkanalysis-sess]] to setup an analysis for your FC data
Line 82: Line 110:
*STEP 6: Use selxavg3-sess to run the subject-level analysis *STEP 6: Use  [[http://surfer.nmr.mgh.harvard.edu/fswiki/selxavg3-sess|selxavg3-sess]] to run the subject-level analysis
Line 84: Line 112:
*STEP 7: Use mri_glmfit or selxavg3-sess to run a group-level analysis *STEP 7: Use  [[http://surfer.nmr.mgh.harvard.edu/fswiki/mri_glmfit|mri_glmfit]] or  [[http://surfer.nmr.mgh.harvard.edu/fswiki/selxavg3-sess|selxavg3-sess]] to run a group-level analysis

work in progress...

About

Walkthrough: How to use FsFast and fcseed-sess for functional connectivity analysis including example commands.

For general tips on using FsFast, download this FS-FAST powerpoint

This walkthrough is based on

*STEP 1: Unpack Data into the FSFAST Hierarchy using unpacksdcmdir

Ex: unpacksdcmdir -src dicomdir/subject/ALLDICOMS -targ fcMRI_dir/subject -cfg subject_config.txt -fsfast -unpackerr

In this example command...

  • Have all fMRI dicoms linked into "ALLDICOMS" directory
  • Arguement for "-targ" specifies output directory
  • subject_config.txt is a configuration text file you create (format below)
  • Use "-fsfast" to generate fsfast hierarchy

subject_config.txt format:

28 bold nii f.nii 29 bold nii f.nii

Col.1: scan acquisition number Col.2: output dir name will be created within "fcMRI_dir/subject" Col.3: output file format - this example is nifti format Col.4: output filename. In this example, 2 files will be created:

  • fcMRI_dir/subject/028/f.nii fcMRI_dir/subject/029/f.nii

1.QA Check after unpacking:

  • A - Check unpacked data (time points, # of slices ..etc)
  • B - Check FSFAST hierarchy in session folder

*STEP 2: Reconstruction Anatomical data using recon-all

Ex:

setenv SUBJECTS_DIR /path/to/recon_dir/ recon-all -s subject_dirname -all -i pathtoT1dicom_scan1.dcm -i pathtoT1dicom_scan2.dcm

In this example command...

  • set your SUBJECTS_DIR variable to your FreeSurfer subject recon directory

  • set the subject's directory name with "-s" ... the arguement you provide will become the directory name within $SUBJECTS_DIR
  • use "-i" to supply the dicoms to reconstruct. Use one "-i" per T1 acquisition.

2.QA Check:

  • A - Check talairach transformation
  • B - Check skull strip, white matter & pial surface

  • C - Re-run "recon-all" if edits are made
  • D - Check hierarchy of reconstructed anatomical data

1.Make FSFAST basic hierarchy (only if data are not unpacked in FSFAST hierarchy)

fsfast-hierarchy.jpg

2.Link to FreeSurfer anatomical analysis

A - Make subjectname’ file in the session directory to link a subject's functional & structural data

3.Create a sessid file (text file with list of your sessions)in your Study DIR.

4.Create a Stimulus Schedule (Paradigm file) in bold folder (A "paradigm" file is a record of which stimulus was presented when & for how long.

Each paradigm file has four columns:

  • A - Stimulus onset time (sec)
  • B - Condition ID code (0, 1, 2, ...)
  • C - Stimulus Duration (sec)
  • D - Stimulus Weight (usually 1)

*STEP 3: Pre-process your bold data using preproc-sess preproc-sess

# Preprocessing of fMRI Data

preproc-sess -s <subjid> -fwhm <#>

1.By default this will do motion correction, smoothing & brain masking

2.Quality Check (plot-twf-sess) 3.Examine additions to FSFAST hierarchy (in each run of bold dir):

  • f.nii (Raw fMRI data)
  • fmc.nii (Motion corrected-MC)

    fmcsm5.nii (MC & smoothed)

  • fmc.mcdat (Text file with the MC parameters (AFNI))
  • brain.mgz (Binary mask of the brain)

# Function-Structure Registration View unregistered:

Run automatic registration:

Check automatic registration:

A - Make edits if needed using scale as the last resort Check talairach registration:

*STEP 4: Use fcseed-sess to generate time-course information for your chosen seed region (as well as nuisance variable signal).

*STEP 5: Use mkanalysis-sess to setup an analysis for your FC data

*STEP 6: Use selxavg3-sess to run the subject-level analysis

*STEP 7: Use mri_glmfit or selxavg3-sess to run a group-level analysis

FsFastFunctionalConnectivityWalkthrough (last edited 2024-01-16 14:11:01 by DougGreve)