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In this study, we have assessed the validity and reliability of an

automated labeling system that we have developed for subdividing the

human cerebral cortex on magnetic resonance images into gyral based

regions of interest (ROIs). Using a dataset of 40 MRI scans we

manually identified 34 cortical ROIs in each of the individual

hemispheres. This information was then encoded in the form of an

atlas that was utilized to automatically label ROIs. To examine the

validity, as well as the intra- and inter-rater reliability of the automated

system, we used both intraclass correlation coefficients (ICC), and a

new method known as mean distance maps, to assess the degree of

mismatch between the manual and the automated sets of ROIs. When

compared with the manual ROIs, the automated ROIs were highly

accurate, with an average ICC of 0.835 across all of the ROIs, and a

mean distance error of less than 1 mm. Intra- and inter-rater

comparisons yielded little to no difference between the sets of ROIs.

These findings suggest that the automated method we have developed

for subdividing the human cerebral cortex into standard gyral-based

neuroanatomical regions is both anatomically valid and reliable. This

method may be useful for both morphometric and functional studies of

the cerebral cortex as well as for clinical investigations aimed at

tracking the evolution of disease-induced changes over time, including

clinical trials in which MRI-based measures are used to examine

response to treatment.
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Introduction

Structural magnetic resonance imaging (MRI) provides exten-

sive detail about the anatomical structure of the brain. It is

becoming increasingly important for characterizing cortical

changes associated with the normal aging process (see Raz, 2004

for review) and further differentiating these from the degenerative

changes associated with dementing illnesses such as Alzheimer’s

disease (AD). Furthermore, structural MRI has now become an

essential tool for the clinical care of patients with brain disease and

is of increasing use in clinical trials to identify response to

treatment. For example, MRI is now a secondary endpoint in

clinical trials of patients with multiple sclerosis (MS), as MS

lesions can now be quantified quickly and reliably (see Bakshi et

al., 2005). Research and clinical investigations of patients with AD

are beginning to incorporate MRI measurements, but these have

been primarily restricted to assessments of whole brain atrophy

(Freeborough and Fox, 1998a,b; Fox et al., 1999, 2001, 2005) or

manual measures of the hippocampus (Jack et al., 1995, 1997,

2003).

The application of MRI to research and clinical studies has been

limited by the ability to quantify the critical dimensions of interest.

Methods have been developed to automatically quantify regions of

interest (ROI), but these have not as of yet been incorporated into

clinical trials. Some of these methods have focused on a single

ROI, such as the hippocampus (Hsu et al., 2002; Csernansky et al.,

2000, 2005; Wang et al., 2003), and the cingulate gyrus (Miller

et al., 2003) or sets of subcortical ROIs (Fischl et al., 2002).

Developing semi-automated procedures for quantifying cortical
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ROIs has been more challenging due to the substantial inter-

individual variability of the topographic features of the cortex

(Zilles et al., 1988; Ono et al., 1990; Kennedy et al., 1998).

Initial efforts at measuring cortical ROIs on MRI scans required

substantial operator involvement (e.g., Damasio and Damasio,

1989; Rademacher et al., 1992). More recent and more automated

methods employ a variety of approaches to the problem of labeling

cortical features, including template-driven warping approaches,

where a local correspondence is established between a manually

labeled atlas brain and individual subject’s brain images (Thomp-

son et al., 1996; Sandor and Leahy, 1997; Hammers et al., 2003;

Buckner et al., 2004; Mega et al., 2005), watershed-based

approaches to extract cortical sulci (Lohmann, 1998; Rettmann et

al., 2002), and graph-based techniques which represent sulci as

vertices on a graph (Mangin et al., 1995; Le Goualher et al., 1999).

We recently reported a probabilistic labeling algorithm (Fischl

et al., 2004) that was applied to two different systems for defining

cortical regions of interest (Rademacher et al., 1992; Destrieux et

al., 1998). The strength of this algorithm is that it is not tied to a

specific neuroanatomical template, but instead incorporates not

only the probable location of a region of interest, but also the

potential inter-subject variance of the location of the region,

derived from whatever training set is employed.

In the present study, we have expanded on this work in several

ways. First, we have developed the definitions of the regions of

interest using curvature based information (i.e., sulcal representa-

tions) available on images of the cortex that are Finflated_ (Dale
and Sereno, 1993; Dale et al., 1999; Fischl et al., 1999a,b, 2001;

Fischl and Dale, 2000); anatomic curvature is visually represented

well on inflated images as they provide a view of the brain in

which the entire cortical surface is exposed, including the tissue

deep in the sulci. Moreover, since the same type of anatomic

curvature information is utilized by the probabilistic labeling

algorithm, we hypothesized that defining labels on the inflated

surface using curvature information would improve the accuracy

of the manual definitions of the cortical regions of interest.

Second, we employed a training set consisting of 40 MRI scans

that included young, middle-aged and elderly controls, as well as

patients with Alzheimer’s disease (AD). These 40 scans were

manually labelled for 34 cortical regions of interest, and an atlas

was generated.

With regard to brain atlases, two approaches can be used

towards developing atlases. The first approach involves the

identification and selection of a highly selected group of

individuals (such as cases of AD patients with CDR 1.0) and

building an atlas that is optimized for that group alone. Though it is

hypothetically possible to construct an atlas from such a selected

set of homogenous cases, apply this atlas onto a larger cohort of

similar cases and thus achieve high accuracy, it has limited

practical value for large morphometric studies aiming to assess

anatomic changes across different population types. The second

approach, such as the one presented in this manuscript, involves

the development of a more generalized atlas that incorporates a

wide range of anatomic and atrophic variance. When applied, the

result produces an atlas that is likely to be slightly less accurate

within a selected group (i.e., when applied only to cases of AD

patients with CDR 1.0) but is applicable across several different

groups and ultimately, is more accurate across these groups. This

more generalized approach to atlas building is important to utilize

when the underlying variable is continuous making group

distinctions somewhat arbitrary.
We used intraclass correlation coefficients (ICC) to assess

validity and reliability. Since we were particularly interested in the

anatomical accuracy of the regions of interest, we developed a

method that uses the mean distance of ‘‘mislabeling’’ on the

cortical surface (known as mean distance maps) to detect the

geographical mismatch between manual and automated regions or

between sets of regions generated by the same (intra-rater) or

different (inter-rater) operators applying the automated process.

Finally, since we were interested in assessing the applicability of

our automated atlas, we employed a jackknife/leave-one-out

technique (a statistical re-sampling method) to test the reliability

of our atlas on novel datasets.
Materials and methods

Subjects

The participants in the study were enrolled by the Washington

University Alzheimer’s Disease Research Center (ADRC) in St.

Louis. As such, all were screened for neurological impairment,

depression and psychoactive medications use (see Fotenos et al.,

2005 for details of this sample). As a part of this assessment, all

subjects were screened for the presence of major vascular risk

factors (e.g., atrial fibrillation, diabetes). Subjects found to have

clinically relevant abnormalities on MRI (e.g., tumors, infarcts)

were also excluded. Individuals with white matter hyperintensities

and other non-specific findings on MRI were included in the

sample. Adults 60 and over were also clinically screened for

dementia and classified based on the Clinical Dementia Rating

(Morris, 1993).

The MRI scans of 40 subjects from this cohort were used in the

present analyses. As noted above, for the development of a cortical

atlas, we wanted to include subjects with a range of atrophy. We

therefore selected MRI scans from subjects that varied widely in

age and clinical status to incorporate the types of variance we find

in our typical studies of aging and dementia. The 40 subjects were

therefore divided into four groups: Group 1—young adults (n =

10; mean age = 21.5, age range 19–24; 6 females, 4 males); Group

2—middle-aged adults (n = 10; mean age = 49.8, age range 41–

57; 7 females, 3 males); Group 3—elderly adults (n = 10; mean

age = 74.3, age range 66–87; 8 females, 2 males); and Group 4—

patients with AD (n = 10; mean age = 78.2, age range 71–86; 5

females, 5 males).

MRI image acquisition

The MRI scans were acquired on a 1.5T Vision system

(Siemens, Erlangen Germany). T1-weighted magnetization-pre-

pared rapid gradient echo (MP-RAGE) scans were obtained

according to the following protocol: two sagittal acquisitions,

FOV = 224, Matrix = 256 � 256, Resolution = 1 � 1 � 1.25

mm, TR = 9.7 ms, TE = 4 ms, Flip angle = 10-, TI = 20 ms,

TD = 200 ms. Two acquisitions were averaged together to

increase the contrast-to-noise ratio. The images were collected

as part of the ongoing operations of the Washington University

ADRC and have appeared in prior publications (e.g., Buckner

et al., 2004; Fotenos et al., 2005). Anonymized comparable data

(from Head et al., 2005) can be freely obtained from the fMRI

Data Center (http://www.fmridc.org/f/fmridc; accession number

2-2004-1168X).

http://www.fmridc.org/f/fmridc
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Cortical surface generation from MRI scans

Each scan was first corrected for motion, averaged, normalized

for intensity and resampled to isotropic dimensions of 1 � 1 � 1

mm using previously published algorithms that are distributed

in the FreeSurfer software package (http://www.martinos.org/

freesurfer) (Dale and Sereno, 1993; Dale et al., 1999; Fischl et

al., 1999a). Next, the skull was removed from the images using a

skull-stripping algorithm (Ségonne et al., 2004) and the images

were segmented to identify the dorsal, ventral and lateral extent of

the gray/white matter boundary to provide a surface representation

of the cortical white matter (Dale and Sereno, 1993; Dale et al.,

1999; Fischl et al., 1999a). The quality of the skull stripping and

accuracy of the gray/white matter boundary for each subject was

reviewed by two anatomically skilled operators (RSD, BTQ). The

cortical white matter surfaces generated by the steps above were

automatically corrected for topological defects (Fischl et al., 2001;

Ségonne et al., 2005), and thereafter utilized in a deformation

procedure that locates the pial (gray matter) surface of the brain

(Fischl and Dale, 2000).

Manual delineation of cortical regions of interest

The cerebral hemispheres were subdivided into 34 regions each

by one operator (RSD), who was blind to participants’ age, gender,

and group status. A Fsulcal_ approach (manual tracing from the

depth of one sulcus to another, thus incorporating the gyrus within)

was used to define most structures (see details below).

Several sources of information were used to guide the delineation

of neuronatomical ROIs on volumetric MRI images, including: (1)

standard neuroanatomical conventions based on brain atlases

(Duvernoy, 1991; Ono et al., 1990), (2) modifications to previously

published definitions (Killiany et al., 1993, 2000; Wible et al., 1995,

1997; Crespo-Facorro et al., 2000; Van Hoesen et al., 2000; Halliday

et al., 2003; Yamasue et al., 2004; Ballmaier et al., 2004; Onitsuka

et al., 2004) and (3) consultations with Drs. Thomas Kemper and

Douglas Rosene (Kemper and Rosene, personal communication).

This information was then used to define the ROIs on the T1 images.

These volumetric ROIs were then transposed onto the Finflated_
cortical surface of each reconstructed brain (Dale and Sereno, 1993;

Fischl et al., 1999a) and using anatomic information regarding local

curvature (e.g., the presence of sulci), the final anatomic labels were

made. As noted above, the inflated surface allows for visualization

of anatomic information across the entire cortical surface (i.e., both

the sulci and gyri) without interference from cortical folding. For

example, as noted in Fig. 1, the cortex around the perimeter of the

central sulcus is buried between the pre- and post-central gyri and

thus not visible on the pial surface (see white asterisk noting

location), but the presence of this cortex is clearly identifiable in the

inflated image (see yellow asterisks noting location). This type of

anatomic curvature information is potentially very useful for

delineating manual regions of interest on the inflated images and

moreover is utilized by the probabilistic labeling procedure to

develop the automated atlas. The anatomic definitions utilized for

each region were as follows:

Temporal lobe—medial aspect

Entorhinal cortex. The rostral and caudal boundaries of the

entorhinal cortex were the rostral end of the collateral sulcus and

the caudal end of the amygdala, respectively. The medial boundary
was the medial aspect of the temporal lobe and the lateral boundary

was the collateral sulcus.

Parahippocampal gyrus. The rostral and caudal boundaries of the

parahippocampal gyrus were the posterior end of the entorhinal

cortex and the caudal portion of the hippocampus (where it could be

identified inferomedial to the trigone of the lateral ventricle), respec-

tively. The medial boundary was designated as the medial aspect of

the temporal lobe and the lateral boundary was the collateral sulcus.

Temporal pole. The temporal pole lies in the anterior portion of

the temporal lobe (rostral boundary) and extends caudally to the

entorhinal cortex. The medial and lateral boundaries were the

medial aspect of the temporal lobe and the superior or inferior

temporal sulci, respectively.

Fusiform gyrus. The rostral boundary of the fusiform gyrus was

the rostral extent of the collateral sulcus. The caudal boundary was

defined on the inflated surface as the rostral limit of the lateral

occipital cortex. The medial and lateral boundaries were the

collateral sulcus and the occipitotemporal sulcus, respectively.

Temporal lobe—lateral aspect

Superior temporal gyrus. The rostral boundary of the superior

temporal gyrus was the rostral extent of the superior temporal

sulcus. The caudal boundary was the caudal portion of the superior

temporal gyrus (posterior to becoming continuous with the

supramarginal gyrus). The medial boundary was the lateral fissure

(and when present, the supramarginal gyrus), and the superior

temporal sulcus was utilized as the lateral extent.

Middle temporal gyrus. The rostral boundary of the middle

temporal gyrus was the rostral extent of the superior temporal sulcus,

and the caudal boundary was the temporo-occipital incisure on the

cortical surface. The superior temporal sulcus was the medial

boundary, and the inferior temporal sulcus was the lateral boundary.

Inferior temporal gyrus. The rostral boundary of the inferior

temporal gyrus was the rostral extent of the inferior temporal sulcus,

and the caudal boundary was designated as the lateral occipital

cortex on the cortical surface. The occipitotemporal sulcus was the

medial boundary, and the inferior temporal sulcus was the lateral

boundary.

Transverse temporal cortex. The rostral boundary was the rostral

extent of the transverse temporal sulcus, and the caudal boundary

was the caudal portion of the insular cortex. The lateral fissure and

the superior temporal gyrus were utilized as the medial and lateral

boundaries, respectively.

Banks of the superior temporal sulcus. (defined as the posterior

aspect of the superior temporal sulcus). The rostral boundary was

the superior temporal gyrus and the caudal boundary was the

middle temporal gyrus.

Frontal lobe

Superior frontal gyrus. The rostral boundary of the superior frontal

gyrus was the rostral extent of the superior frontal sulcus, and the

caudal boundary was the paracentral sulcus on the inflated surface.

http://www.martinos.org/freesurfer


Fig. 1. Pial (left) and inflated (right) cortical representations of the regions of interest in one hemisphere. The top row illustrates the lateral view of the

hemisphere while the bottom row shows the medial view of the hemisphere. The white asterisk on the pial surface (left) indicates the cortex around the

perimeter of the central sulcus that is buried within the gyri and thus not visible. The yellow asterisks on the inflated surface (right) indicate the cortex around

the perimeter of the central sulcus that has been Finflated_ and is now visible.

R.S. Desikan et al. / NeuroImage 31 (2006) 968–980 971
The medial and lateral boundaries were designated as the medial

aspect of the frontal lobe and the superior frontal sulcus, respectively.

Middle frontal gyrus. Subdivided into:

(a) Rostral division. The rostral boundary was the rostral extent

of the superior frontal sulcus, and the caudal boundary was the

caudal extent of the middle frontal gyrus. The medial and lateral

boundaries were the superior frontal sulcus and the inferior frontal

sulcus, respectively.

(b) Caudal division. The rostral boundary was the rostral extent

of the middle frontal gyrus, and the caudal boundary was the pre-

central gyrus. The medial and lateral boundaries were designated as

the superior frontal sulcus and the inferior frontal sulcus, respectively.

Inferior frontal gyrus. First, the whole of the inferior frontal

gyrus was labelled volumetrically, and then was subdivided on
the surface. The rostral boundary was the rostral extent of the

inferior frontal sulcus, and the caudal boundary was the

precentral gyrus. The medial and lateral boundaries were the

lateral bank of the inferior frontal sulcus and the medial bank of

the lateral orbital sulcus and/or the circular insular sulcus,

respectively.

(a) Pars opercularis. The first gyrus from the precentral gyrus.

(b) Pars triangularis. The second gyrus from the precentral

gyrus.

(c) Pars orbitalis. The remainder of the inferior frontal gyrus

once the pars opercularis and triangularis have been defined.

Orbitofrontal cortex. Subdivided into:

(a) Lateral division. The rostral boundary of the lateral

division of the orbitofrontal cortex was the rostral extent of
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the lateral orbital gyrus (where it appears with the frontomar-

ginal sulcus), and the caudal boundary was the caudal portion

of the lateral orbital gyrus. The medial and lateral boundaries

were the midpoint of the olfactory sulcus and the lateral bank

of the lateral orbital sulcus and/or the circular insular sulcus,

respectively.

(b) Medial division. The rostral boundary of the medial division

of the orbitofrontal cortex was the rostral extent of the medial

orbital gyrus, and the caudal boundary was the caudal portion of

the medial orbital gyrus/gyrus rectus. The medial and lateral

boundaries were the cingulate cortex on the inflated surface and the

medial bank of the superior frontal gyrus (or the cingulate gyrus

when visible), respectively.

Frontal pole. The rostral and caudal boundaries of the frontal

pole were the superior frontal gyrus and the rostral division of the

middle frontal gyrus, respectively. Note that the frontal pole was

manually designated using an exclusionary criterion (other frontal

lobe regions were first designated and the remaining portion was

called frontal pole) and is not actually used as a measure of the

frontal pole itself.

Precentral gyrus. The rostral and caudal extents of the central

sulcus were the rostral and caudal boundaries of the precentral

gyrus, respectively. The medial boundary was specific frontal gyri

(superior, middle and inferior), and the lateral boundary was the

medial bank of the central sulcus.

Paracentral lobule. The rostral boundary of the paracentral

lobule was the posterior extent of the superior frontal gyrus, and

the caudal boundary was the rostral extent of the precuneus cortex.

The medial and lateral boundaries were the medial aspect of the

cingulate cortex and the superior frontal gyrus (or pre- and

postcentral gyri when visible), respectively.

Parietal lobe

Postcentral gyrus. The rostral and caudal extents of the cen-

tral sulcus were the rostral and caudal boundaries of the post-

central gyrus, respectively. The medial and lateral boundaries

were the lateral bank of the precentral gyrus and the lateral

fissure and/or the medial bank of the superior parietal gyrus,

respectively.

Supramarginal gyrus. The caudal extent of the superior temporal

gyrus was the rostral boundary, and the rostral extent of the

superior parietal gyrus was the caudal boundary. The medial and

lateral boundaries were the lateral banks of the intraparietal sulcus

and the medial banks of the lateral fissure and/or the superior

temporal gyrus, respectively.

Superior parietal cortex. The rostral and caudal boundaries of

the superior parietal cortex were the precentral gyrus and lateral

occipital cortex, respectively. The medial and lateral boundaries

were the precuneus and/or cuneus cortex and the inferior parietal

cortex, respectively.

Inferior parietal cortex. The inferior parietal cortex region

includes the inferior parietal gyrus and the angular gyrus and

lies inferior to the superior parietal gyrus. The rostral and
caudal boundaries were the supramarginal gyrus and the lateral

occipital cortex, respectively. The medial and lateral boundaries

were the superior parietal gyrus and the middle temporal gyrus,

respectively.

Precuneus cortex. The rostral boundary was the posterior

extent of the paracentral lobule, and the caudal boundary was

the lingual gyrus. The medial and lateral boundaries were the

parieto-occipital fissure and the superior parietal gyrus,

respectively.

Occipital lobe

Lingual gyrus. The rostral boundary of the lingual gyrus was the

posterior extent of the parahippocampal gyrus, and the caudal

boundary was the most posterior portion of the occipital cortex.

The medial and lateral boundaries were the medial portion of the

temporal and occipital cortices and the medial bank of the

collateral sulcus, respectively.

Pericalcarine cortex. The rostral boundary of the pericalcarine

cortex was the rostral extent of the calcarine sulcus, and the caudal

boundary was the most posterior portion of the occipital cortex.

The medial and lateral boundaries were the medial portion of the

temporal and occipital cortices and the inferomedial end of the

calcarine sulcus, respectively.

Cuneus cortex. The rostral and caudal extents of the calcarine

sulcus were designated as the rostral and caudal boundaries of the

cuneus cortex. The medial boundary was the most medial portion

of the occipital and parietal cortices. The supero-lateral boundary

was the parieto-occipital fissure, and the inferolateral boundary

was the pericalcarine cortex.

Lateral occipital cortex. The rostral and caudal boundaries of the

lateral occipital cortex were the superior parietal gyrus and as the

last visible portion of occipital cortex, respectively. The medial and

lateral boundaries were the cuneus/pericalcarine cortex and the

inferior temporal/inferior parietal gyri, respectively.

Cingulate cortex

Rostral anterior division. The rostral boundary was the rostral

extent of the cingulate sulcus (inferior to the superior frontal

sulcus), and the caudal boundary was the genu of the corpus

callosum. The medial boundary was the medial aspect of the

cortex. The supero-lateral boundary was the superior frontal gyrus,

and the inferolateral boundary was defined as the medial division

of the orbitofrontal gyrus.

Caudal anterior division. The rostral boundary was the genu of

the corpus callosum, and the caudal boundary was established as

the mammillary bodies. The medial and lateral boundaries were the

medial aspect of the cortex and the superior frontal gyrus,

respectively.

Posterior division. The rostral and caudal extent were the caudal

anterior and the isthmus divisions of the cingulate cortex,

respectively. The medial and lateral boundaries were the corpus

callosum and the superior frontal gyrus and/or paracentral lobule,

respectively.
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Isthmus division. The rostral and caudal boundaries were the

posterior division of the cingulate cortex and the parahippocampal

gyrus, respectively. The medial and lateral boundaries were the

medial wall (area unknown) and the precuneus, respectively.

Corpus callosum. The rostral and caudal extents of the corpus

callosum were the medial division of the orbitofrontal cortex and

the isthmus division of the cingulate cortex, respectively. The

medial and lateral boundaries were the medial wall (area unknown)

and the divisions of the cingulate cortex, respectively. Note this

region of interest was included to restrict the boundaries of other

regions and is not actually used as a measure of the corpus

callosum itself since the procedures described in this manuscript

measure the volume between the white matter and the gray matter

surfaces.

Construction of cortical atlas

Once the manually drawn ROIs for both hemispheres of all 40

brains were completed, a cortical atlas was generated using a

registration procedure that aligns the cortical folding patterns

(Fischl et al., 1999b) and probabilistically assigns a neuroanatom-

ical region to every point on the cortical surface (Fischl et al.,

2004). The probabilistic algorithm, in an initial step, generates a

spherical representation of each brain by minimizing the metric

distortion between the cortical and the spherical representations.

Next, all spherical surfaces are registered together. An energy

functional measuring the alignment of the cortical folding patterns

with the average is iteratively minimized by gradient-descent onto

the sphere in a multi-scale manner (the full energy functional is

described in Fischl et al., 1999b). This establishes a spherical

surface-based coordinate system that is adapted to the folding

pattern of each individual subject thus allowing for increased

precision in registering anatomic features of the human brain

across subjects (Fischl et al., 1999b). Then, a spherical statistical

atlas is used to label the cortical surfaces into neuroanatomical

regions of interest. This procedure models the labeling system as a

first order anisotropic non-stationary Markov random field on the

curvature of the cortical surface, allowing it to capture the spatial

relationships and variance between regions that are present in the

training set (see Fischl et al., 2002, 2004 for more details on the

probabilistic labeling procedure). Therefore, the automated system

incorporates information about sulcal and gyral geometry with

spatial information regarding the location of brain structures

(derived from the manually drawn regions of interest) and the

variance of that information included in the training set to

determine the regions of interest.

Data analysis

Intraclass correlations

Validity was assessed by comparing the volumes generated

manually to those generated by the automated system. Reliability

was assessed by comparing the volumes generated by the automated

system on two occasions by the same operator, blind to both the

clinical status and the identity of each subject (i.e., intra-rater

reliability) or by two operators independently processing all of the

cases, blind to both the clinical status and identities of subject (i.e.,

inter-rater reliability). In both cases, volumes generated were

compared using intraclass correlation coefficients. For comparisons

between the manual and automated system (assessing validity), we
used an ICC based on a two-way analysis of variance (ANOVA)

with fixed effects since we were interested in the consistency

between these two methods (Streiner and Norman, 1989). For

comparisons between operators (inter-rater reliability) and between

occasions (intra-rater reliability), we used an ICC based on a two-

way ANOVAwith random effects, since we were interested in how

these occasions or operators were representative of the larger

spectrum of occasions or operators (Streiner and Norman, 1989).

Mean distance maps

In order to assess the anatomical consistency of the regions,

within subject comparisons (manual vs. automated, or between

occasions or operators processing the automated procedure) were

made by overlaying all of the regions on the inflated surface and

determining the mismatch error present between the individual

regions when the two labeling systems (manual vs. automated)

were compared.

First, two distance maps, Di,1 and Di,2 (one per labeling

system) were generated for each subject i in the dataset. For each

vertex v with label l(v) in a specific labeling system, the geodesic

distance d(v) to the label border was computed on the inflated

surface S: d vð Þ ¼ minx a Sl xð Þ6¼l vð Þ g x; vð Þ, where g(x,v) represents

the geodesic distance between vertex x and vertex v on the inflated

surface S. Next, individual mean distance maps Di were generated

as the average of the previous distance maps: Di ¼ DI ;1 þ DI ;2

2
. In

addition to individual distance maps, an average distance map D

was computed as the average of all individual maps D ¼ 1
n

Ri Di

where n is the number of subjects in the dataset.

Essentially, mean distance maps provide a point-for-point

estimate of the degree of mismatch (the mean distance of error)

between labeling systems. Furthermore, unlike intraclass correlation

coefficients which assess only the correspondence between the

volumetric measurements, mean distance maps allow for the

visualization of the boundary areas of mismatch (e.g., the sulcal

boundaries) within a region of interest when labeling systems are

compared. Such differences can be displayed in color (see Fig. 2,

where a discrepancy of 0.5 mm is shown in red and a discrepancy of

1.0 mm is portrayed in yellow). Finally, when comparing labeling

systems, mean distance maps may provide a more meaningful

estimate of error than intraclass correlation coefficients by showing

the actual spatial distribution of error and thus allowing for the

assessment of which errors are meaningful. As is presented in Fig. 2,

the mismatch is almost entirely at the boundaries of the regions, and

the errors are less than 1 mm. It is likely that the boundaries cannot

be localized with any greater precision and thus these may not be

Ferrors_ in the true sense of the word. (Fischl et al., 2004).

Jackknifing/Leave-one-out reliability

In order to assess the reliability of the automated atlas when

applied to novel datasets, we employed a statistical technique termed

jackknifing (Efron, 1982; Efron and Tibshirani, 1993). Using this

method, from the original set of 40 subjects, the manual regions of

interest from 39 subjects were used as a training set to construct an

automated atlas thus leaving out one dataset whose ROIs were not

included as part of the training set. The atlas from the 39 subjects was

then applied to the left-out dataset and the mismatch error between

the automated atlas (built from the training set of 39 subjects) and the

manual regions for the left-out dataset was quantified point-for-point

across the entire cortical surface. This process was then repeated

until all 40 subjects had been left-out once. The average mismatch

error resulting from this jackknifing procedure was compared with



Fig. 2. Inflated cortical representation (lateral, medial and ventral views) displaying mean distance error maps between the manual and the automated regions of

interest for all 40 subjects. The dark gray overlay represents sulcal cortical regions and the light gray overlay represents gyral cortical regions. The colorscale

represents a maximum value for the mismatch between the two sets of images as follows: 0 mm (gray), 0.5 mm (red), 1 mm (yellow). Note that the mismatch

between the image sets appears to lie entirely along the borders of the regions of interest.
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the average mismatch error from the original automated versus

manual comparison to determine the equivalence of applying the

automated atlas to a dataset fromwhich the atlas was constructed and

to a novel dataset that did not contribute to the construction of the

automated atlas (determined from the jackknife versus manual

comparison).
Results

Manual versus automated analysis (validity)

Table 1 lists the intraclass correlation coefficients for 32 of the

34 labels in each hemisphere. One region, the corpus callosum, was

excluded a priori, since it is a white matter structure and, as noted

above, was only included in order to better define the regions

around it. A second region, the frontal pole, was excluded after

examination of the preliminary analyses. This region proved to be

unreliable (average ICC 0.26), in all likelihood because it was

defined as that region in the most anterior portion of the brain that

remained when all other regions near it were outlined.

The average ICC for the comparison of the 32 manual and

automated regions in each hemisphere was 0.835, with values

ranging from a low of 0.623 for the left banks of the superior
temporal sulcus and right pericalcarine cortex to a high of 0.977 for

the right superior frontal gyrus (see Table 2). Sixty of the sixty-four

labels had intraclass correlation coefficients higher that 0.700. The

regions with smaller surface areas (and thus smaller volumes)

resulted in smaller ICC values (c.f., left temporal pole and left

superior frontal gyrus) when the automated and manual regions

were compared. This was not surprising as a label with an area of A

on the inflated surface is of approximate size r ¼
ffiffiffi
A
p

q
. Since our

labeling system is accurate of the order of the mm, we can roughly

estimate the expected labeling error C in function of the size r by:

C rð Þ ¼ A r � 1ð Þ
A rð Þ ¼ r � 1ð Þ2

r2
¼ 1� 2

r
þ 1

r2
or in function of the area A

by: C Að Þ ¼ 1� 2
ffiffiffi
p
A

p
þ p

A
. For small areas of approximate size r =

6 mm, such as the temporal pole, this leads to an estimate of C(r) =

25/36 ; 69%. This expected labeling error partly explains the smaller

ICC values found for smaller labels. For larger areas with r = 30mm,

such as the superior frontal gyrus, we find that C(r) = 841/900 ;

93%. This seems to imply that our method, which uses curvature

information alone (through a non-stationary anisotropic Markov

random field) in order to locate each region, might not be accurate

enough when small regions are targeted. Integration of additional

information (for example, incorporating the relative location of

subcortical structures to better locate cortical labels) should be able

to alleviate this limitation and is of significant interest for us as future

work to make the smaller regions more reliable.



Table 2

Intraclass correlations (two-way ANOVA with random effects)—intra- and

inter-rater comparisons of the volumes for each region of interest

Region Intra-rater Inter-rater

Left hem Right hem Left hem Right hem

Banks superior

temporal sulcus

0.997 0.998 0.996 0.998

Caudal anterior

cingulate cortex

0.998 0.999 0.998 0.999

Caudal middle

frontal gyrus

0.999 0.999 0.999 0.999

Cuneus cortex 0.999 0.999 0.999 0.998

Entorhinal cortex 0.993 0.994 0.995 0.989

Fusiform gyrus 0.999 0.999 0.999 0.999

Inferior parietal cortex 0.999 0.999 0.999 0.999

Inferior temporal gyrus 0.999 0.999 0.999 0.999

Isthmus-cingulate cortex 0.997 0.997 0.998 0.998

Lateral occipital cortex 0.999 0.999 0.999 0.999

Lateral orbital

frontal cortex

0.999 0.999 0.999 0.998

Lingual gyrus 0.999 0.999 0.999 0.999

Medial orbital

frontal cortex

0.999 0.999 0.999 0.999

Middle temporal gyrus 0.999 0.999 0.999 0.999

Parahippocampal gyrus 0.998 0.995 0.999 0.993

Paracentral lobule 0.999 0.999 0.999 0.999

Pars opercularis 0.999 0.998 0.999 0.998

Pars orbitalis 0.997 0.998 0.999 0.998

Pars triangularis 0.998 0.999 0.998 0.999

Pericalcarine cortex 0.999 0.999 0.999 0.999

Postcentral gyrus 0.999 0.999 0.999 0.999

Posterior-cingulate cortex 0.998 0.997 0.998 0.998

Precentral gyrus 0.999 0.999 0.999 0.999

Precuneus cortex 0.999 0.999 0.999 0.999

Rostral anterior

cingulate cortex

0.999 0.998 0.999 0.998

Rostral middle

frontal gyrus

0.999 0.997 0.999 0.999

Superior frontal gyrus 0.999 0.999 0.999 0.999

Superior parietal cortex 0.999 0.999 0.999 0.999

Superior temporal gyrus 0.999 0.999 0.999 0.999

Supramarginal gyrus 0.999 0.999 0.999 0.999

Temporal pole 0.996 0.998 0.996 0.998

Transverse

temporal cortex

0.998 0.997 0.996 0.995

Table 1

Intraclass correlations (two-way ANOVA with fixed effects)—manual

versus automated comparison for the volumes of each region of interest

Region Left hem Right hem

Banks superior temporal sulcus 0.623 0.733

Caudal anterior-cingulate cortex 0.768 0.809

Caudal middle frontal gyrus 0.897 0.907

Cuneus cortex 0.767 0.797

Entorhinal cortex 0.818 0.737

Fusiform gyrus 0.812 0.880

Inferior parietal cortex 0.935 0.960

Inferior temporal gyrus 0.862 0.870

Isthmus–cingulate cortex 0.729 0.729

Lateral occipital cortex 0.873 0.900

Lateral orbital frontal cortex 0.865 0.814

Lingual gyrus 0.854 0.923

Medial orbital frontal cortex 0.834 0.907

Middle temporal gyrus 0.891 0.892

Parahippocampal gyrus 0.857 0.804

Paracentral lobule 0.839 0.861

Pars opercularis 0.817 0.792

Pars orbitalis 0.664 0.729

Pars triangularis 0.745 0.819

Pericalcarine cortex 0.732 0.623

Postcentral gyrus 0.916 0.880

Posterior-cingulate cortex 0.833 0.812

Precentral gyrus 0.967 0.972

Precuneus cortex 0.839 0.945

Rostral anterior cingulate cortex 0.811 0.835

Rostral middle frontal gyrus 0.878 0.908

Superior frontal gyrus 0.965 0.977

Superior parietal cortex 0.912 0.856

Superior temporal gyrus 0.921 0.944

Supramarginal gyrus 0.915 0.894

Temporal pole 0.649 0.729

Transverse temporal cortex 0.712 0.719
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Mean distance error maps for the labels on the medial,

lateral and ventral surface revealed that the mismatch was

almost entirely along the boundaries between the structures and

on the magnitude of 1 mm when the manual and automated

labeling schemes were compared (see Fig. 2). Furthermore, the

mismatch error derived from the jackknifing/leave-one-out

procedure was used to assess the applicability of the automated

atlas. The average mismatch error from the jackknife procedure

revealed no difference with the average mismatch error from the

automated scheme (less than 0.01%) thus lending support to the

fact that the automated labeling scheme is highly reliable when

applied to new brains that are not part of the original training

set.

Intra- and inter-rater comparisons (reliability)

Intra-rater reliability was measured by having one operator

(RSD) process all of the cases twice, blind to both the clinical

status and the identity of each subject. Table 2 lists the intraclass

correlation coefficients for the same 32 labels in each hemisphere

that were provided in Table 1. The average ICC for intra-rater

reliability was 0.998, ranging from a low of 0.993 to a high of

0.999 (see Table 2). Mean distance error maps for the labels on

the medial, lateral and ventral surface revealed that the variability

seen was almost entirely the boundaries between the structures

and on the magnitude of less than 1 mm (see Fig. 3).
Inter-rater reliability was measured by having a second

operator (RJK) independently process all of the cases also blind

to both the clinical status and identities of subject. Table 2 lists the

intraclass correlation coefficients for the same 32 labels in each

hemisphere that were provided in Table 1. The average inter-rater

reliability was 0.998, with values ranging from a low of 0.993 to a

high of 0.999 (see Table 2). Mean distance error maps for the

labels on the medial, lateral and ventral surface revealed that the

variability was all along the boundaries between the structures and

on the magnitude of less than 1 mm (see Fig. 4).
Discussion

Automated systems for labeling cortical structures provide an

efficient way to undertake a complex and otherwise labor-

intensive process, provided the accuracy of these methods are



Fig. 3. Inflated cortical representation (lateral, medial and ventral views) displaying mean distance error maps between two sets of automated labels generated

by the same operator for all 40 subjects (intra-rater). The dark gray overlay represents sulcal cortical regions and the light gray overlay represents gyral cortical

regions. The colorscale represents a maximum value for the mismatch between the two sets of images as follows: 0 mm (gray), 0.5 mm (red), 1 mm (yellow).

Note the presence of small mismatch between the image sets; this mismatch appears to lie entirely along the borders of the regions of interest.
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sufficient. In the work presented here our motivation was to

develop an automated anatomic labeling system from a range of

subjects to better account for cortical inter-subject variability that

could then be applied to a variety of subjects in studies involving

the cerebral cortex. The current findings suggest that the

automated system for subdividing the cortex into regions of

interest described here is valid when compared to manual

procedures and has a very high degree of reliability.

The anatomic labeling scheme presented here is comparable to

several other approaches that have been utilized to parcellate the

human brain into neuroanatomical regions of interest. Using a

volumetric labeling technique, Tzourio-Mazoyer et al. (2002)

manually delineated regions of interest for a single subject existing

in common stereotaxic space in order to provide a more robust

anatomic basis for functional activation studies, not for determining

the absolute anatomic localization of brain structures that is required

for morphometric studies. Other examples of parcellation techniques

involve the spatial transformation to a common stereotaxic space of

a fixed set of manual labels in order to compute probabilistic maps of

the anatomic regions (which encode information regarding inter-

subject anatomic variability) that can then be used to further label

new datasets (Hammers et al., 2003; Mega et al., 2005). This work is

similar to the one presented here in that the manual labeling was

performed on a range of subjects and proposes probabilistic
approaches to potentially label new brains but differs from our

work in the usage of whole-brain, anatomic labels and volumetric

averaging approaches (Hammers et al., 2003; Mega et al., 2005)

instead of surface-based techniques developed specifically for the

cerebral cortex. Surface-based approaches similar to the one

presented here have also been employed to the problem of labeling

cortical features including the modelling of specific cortical regions

to examine patterns of graymatter distribution across various subject

groups (Thompson et al., 2001), the extraction of cortical sulci using

a watershed based approach (Rettmann et al., 2002), and the

probabilistic determination of sulcal patterns using manually

labelled datasets (Van Essen, 2005). Though these approaches

isolate certain cortical features, a detailed neuroanatomical labeling

scheme along with its incorporation into an automated algorithm for

probabilistically labeling future datasets is not presented.

Prior methods defining anatomic regions and labeling the

cortex have typically used Pearson’s correlations and/or intraclass

correlation coefficients to judge the validity of the techniques,

using manually drawn regions of interest as the standard (Mega et

al., 2005) and assess reliability between operators (Crespo-Facorro

et al., 2000; Goncharova et al., 2001; Buckner et al., 2004). We

used these standard procedures to assess validity of the techniques

described here and found an average ICC for all structures of

0.835 when the automated and manual labeling schemes were



Fig. 4. Inflated cortical representation (lateral, medial and ventral views) displaying mean distance error maps between two sets of automated labels generated

by the two separate operators for all 40 subjects (inter-rater). The dark gray overlay represents sulcal cortical regions and the light gray overlay represents gyral

cortical regions. The colorscale represents a maximum value for the mismatch between the two sets of images as follows: 0 mm (gray), 0.5 mm (red), 1 mm

(yellow). Note the presence of small mismatch between the image sets; this mismatch appears to lie entirely along the borders of the regions of interest.
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compared. In general, the regions with smaller surface areas (and

thus smaller volumes) yielded lower ICC values when compared

to regions with larger surface areas (c.f., left temporal pole and left

superior frontal gyrus). This seems to imply that for these smaller

structures curvature information alone may not be sufficient for the

automated algorithm to accurately locate the regions of interest.

Additional information (such as information regarding the relative

location of subcortical structures such as the hippocampus and

amygdala to cortical structures such as the temporal pole and

entorhinal cortex) may need to be incorporated into the automated

labeling scheme to better determine the location of these smaller

regions and as such is of significant interest to us as future work to

aid in making the smaller structures more reliable. Additionally,

regions such as the banks of the superior temporal sulcus and the

pericalcarine cortex have larger inter-individual variability due to

being purely sulcal in nature thus explaining their lower ICC values.

Finally, we used intraclass correlation coefficients to assess the

reliability of the automated system by intra- and inter-rater

measurements and found an average ICC for all structures of 0.998.

The intraclass correlations indicate that there is an overall high

level of validity and reliability for this automated cortical labeling

system. However, these types of assessments evaluate the similarity

of the volumes generated for each region of interest rather than the

accuracy of the specific location of the anatomic regions. This opens

up the possibility that the volumes could be similar, at the same time

that the regions of interest could lack congruence. Thus, we

developed mean distance maps (i.e., mean distance, in mm, of the
mismatches), in order to get a better estimate of the degree of

anatomical mismatch between data sets.

These mean distance maps demonstrated that the variability

between the manual and automated regions of interest was along the

boundaries of the structures and of a magnitude of 1 mm or less

(which is approximately at the limit of the 1 mm isotropic resolution

of the resliced images). As can be seen in Fig. 2, there appeared to be

little mismatch within the main body of any of the structures (i.e., the

red and yellow regions are all at the boundaries of the ROIs). This

strongly suggests that the automated system subdivides the cortex

equivalently to a manual operator. To assess the applicability of the

automated labeling procedure, we utilized a jackknife/leave-one-out

technique (Efron, 1982; Efron and Tibshirani, 1993) to apply the

atlas onto a new dataset that was not part of the training set from

which the atlas was developed. One of the strengths of this technique

is that it provides an estimate of the reliability of the automated

procedure when applied to datasets with the same general

composition as the one employed here (Efron, 1982; Efron and

Tibshirani, 1993). The average mismatch error from this jackknife

procedure was equivalent to the average mismatch error from the

automated procedure thus lending further support to the reliability of

our labeling scheme when applied to novel datasets. As part of our

ongoing research studies on aging and AD, we are currently in the

process of applying this automated labeling scheme to images

acquired from a different scanner using differing parameters than the

ones presented here and will be presenting this work in future

publications. Finally, as can be seen in Figs. 3 and 4, when applied to
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assess intra- and inter-rater reliability, we found minimal variability

between the sets of regions. This should not be surprising, since one

of the strengths of automated systems is the ability to provide

consistent measures.

The consistency of these measures is of particular importance for

clinical trials and other longitudinal studies, which depend on

comparisons of scans over time. Recently, we have completed a

study examining the same set of subjects scanned at multiple

intervals both across various scanner types (GE and Siemens) and

across multiple field strengths (1.5 and 3.0 T). Our laboratory is in

the process of using morphometric tools to quantify the overall

measurement variability of MRI in these subjects (Quinn et al.,

2005; Han et al., submitted for publication).

In addition to being highly consistent and automated, one of the

strengths of the current labeling scheme is its development from a

range of subjects including young, middle-aged and elderly controls

as well as patients with AD. Our hypothesis was that by using a

training set of brains from a range of subjects, we would better

account for inter-subject anatomic variability and thus allow the

automated algorithm to define the cortical regions of interest with

improved accuracy. To test this hypothesis, we: (1) constructed an

automated atlas from manually labelled cortical regions of interest

from our subset of 10 elderly controls and applied this atlas to our

subset of 10 patients with AD, (2) constructed an automated atlas

frommanually labelled cortical regions of interest from our subset of

10 AD patients and applied this atlas to our subset of 10 elderly

controls, and (3) compared the average intraclass correlation

coefficient (between the automated and manual regions of interest)

derived from both of the above mentioned atlases with the average

intraclass correlation coefficient derived from the previously

constructed atlas of 40 subjects. The results from this study revealed

both the elderly and AD atlases to have smaller average ICC values

(elderly atlas average ICC = 0.748, AD atlas average ICC value =

0.726) when compared with the atlas constructed from the 40

subjects (average ICC value = 0.835). This suggests that an atlas

constructed with a narrower range of anatomic variability (i.e., all

elderly, all males, all females, etc.,) would be less accurate than

one that incorporated a wider range of anatomic variability. Though

it is hypothetically possible to construct an atlas from a homogenous

set of cases and apply this atlas onto a larger cohort of similar cases

(e.g., build an atlas from young females to apply to only young

females), it has limited practical value for large morphometric

studies aiming to assess anatomic changes across different popula-

tion types.

In summary, we have presented an automated system for

subdividing the human cerebral cortex into standard gyral-based

neuroanatomical regions, and demonstrated this procedure to be

both anatomically valid and highly reliable. This type of detailed

neuroanatomic information can be used for co-registration of MRI

scans with other types of in vivo imaging studies (e.g., fMRI, PET,

SPECT) and may provide a valuable tool for research studies

involving the cerebral cortex as well as clinical trials in which MRI

measures are used to examine response to treatment and/or to track

the evolution of disease over time.
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New Frontiers in Cognitive Aging. Oxford Univ. Press, pp. 115–134.

Rettmann, M.E., Han, X., Xu, C., Prince, J.L., 2002. Automated sulcal

segmentation using watersheds on the cortical surface. NeuroImage 15,

329–344.

Sandor, S., Leahy, R., 1997. Surface-based labeling of cortical anatomy

using a deformable atlas. IEEE Trans. Med. Imaging 16, 41–54.

Ségonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K.,

Fischl, B., 2004. A hybrid approach to the skull stripping problem in

MRI. NeuroImage 22, 1060–1075.

Ségonne, F., Grimson, E., Fischl, B., 2005. A genetic algorithm for the

topology correction of cortical surfaces. IPMI-LNCS 3964, 393–405.

Streiner, D.L., Norman, G.R., 1989. Health Measurement Scales A Practical

Guide To Their Development and Use. Oxford Univ. Press, Oxford, UK.

Thompson, P.M., Schwartz, C., Toga, A.W., 1996. High-resolution random

mesh algorithms for creating a probabilistic 3D surface atlas of the

human brain. NeuroImage 3, 19–34.

Thompson, P.M., Mega, M.S., Woods, R.P., Zoumalan, C.I., Lindshield,



R.S. Desikan et al. / NeuroImage 31 (2006) 968–980980
C.J., Blanton, R.E., Moussai, J., Holmes, C.J., Cummings, J.L., Toga,

A.W., 2001. Cortical change in Alzheimer’s disease detected with a

disease-specific population-based brain atlas. Cereb. Cortex 11, 1–16.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard,

O., Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical

labeling of activations in SPM using a macroscopic anatomical parcel-

lation of the MNI MRI single-subject brain. NeuroImage 15, 273–289.

Van Essen, D.C., 2005. A PopulationAverage, Landmark- and Surface-based

(PALS) atlas of human cerebral cortex. NeuroImage 28, 635–662.

Van Hoesen, G.W., Parvizi, J., Chu, C.C., 2000. Orbitofrontal cortex

pathology in Alzheimer’s disease. Cereb. Cortex 10, 243–251.

Wang, L., Swank, J.S., Glick, I.E., Gado, M.H., Miller, M.I., Morris, J.C.,

Csernansky, J.G., 2003. Changes in hippocampal volume and shape

across time distinguish dementia of the Alzheimer type from healthy

aging. NeuroImage 20, 667–682.
Wible, C.G., Shenton, M.E., Hokama, H., Kikinis, R., Jolesz, F.A., Metcalf,

D., McCarley, R.W., 1995. Prefrontal cortex and schizophrenia. A

quantitative magnetic resonance imaging study. Arch. Gen. Psychiatry

52, 279–288.

Wible, C.G., Shenton, M.E., Fischer, I.A., Allard, J.E., Kikinis, R., Jolesz,

F.A., Iosifescu, D.V., McCarley, R.W., 1997. Parcellation of the human

prefrontal cortex using MRI. Psychiatry Res. 28, 29–40.

Yamasue, H., Iwanami, A., Hirayasu, Y., Yamada, H., Abe, O., Kuroki, N.,

Fukuda, R., Tsujii, K., Aoki, S., Ohtomo, K., Kato, N., Kasai, K., 2004.

Localized volume reduction in prefrontal, temporolimbic, and para-

limbic regions in schizophrenia: an MRI parcellation study. Psychiatry

Res. 15, 195–207.

Zilles, K., Armstrong, E., Schleicher, A., Kretschmann, H.J., 1988. The

human pattern of gyrification in the cerebral cortex. Anat. Embryol.

(Berl.) 179, 173–179.


	An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
	Introduction
	Materials and methods
	Subjects
	MRI image acquisition
	Cortical surface generation from MRI scans
	Manual delineation of cortical regions of interest
	Temporal lobe-medial aspect
	Entorhinal cortex
	Parahippocampal gyrus
	Temporal pole
	Fusiform gyrus

	Temporal lobe-lateral aspect
	Superior temporal gyrus
	Middle temporal gyrus
	Inferior temporal gyrus
	Transverse temporal cortex
	Banks of the superior temporal sulcus

	Frontal lobe
	Superior frontal gyrus
	Middle frontal gyrus
	Inferior frontal gyrus
	Orbitofrontal cortex
	Frontal pole
	Precentral gyrus
	Paracentral lobule

	Parietal lobe
	Postcentral gyrus
	Supramarginal gyrus
	Superior parietal cortex
	Inferior parietal cortex
	Precuneus cortex

	Occipital lobe
	Lingual gyrus
	Pericalcarine cortex
	Cuneus cortex
	Lateral occipital cortex

	Cingulate cortex
	Rostral anterior division
	Caudal anterior division
	Posterior division
	Isthmus division
	Corpus callosum


	Construction of cortical atlas
	Data analysis
	Intraclass correlations
	Mean distance maps
	Jackknifing/Leave-one-out reliability


	Results
	Manual versus automated analysis (validity)
	Intra- and inter-rater comparisons (reliability)

	Discussion
	Acknowledgments
	References


